外文翻譯---預應力碳纖維布加固鋼筋混凝土梁抗彎性能研究-其他專業(yè)_第1頁
外文翻譯---預應力碳纖維布加固鋼筋混凝土梁抗彎性能研究-其他專業(yè)_第2頁
外文翻譯---預應力碳纖維布加固鋼筋混凝土梁抗彎性能研究-其他專業(yè)_第3頁
外文翻譯---預應力碳纖維布加固鋼筋混凝土梁抗彎性能研究-其他專業(yè)_第4頁
外文翻譯---預應力碳纖維布加固鋼筋混凝土梁抗彎性能研究-其他專業(yè)_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、翻譯材料 題目:預應力碳纖維布加固鋼筋混凝土梁抗彎性能研究出處:Web Mining and Web-based Application, 2021. WMWA 09. Second Pacific-Asia Conference .目 錄第一節(jié)1 Abstract1 2 英文論文原文局部1第二節(jié)1 漢語翻譯局部 8 第一章Research on Deflection of Strengthening Concrete Beam with Prestressed CFRP SheetsWANG Xiang yang, JI Shao bo, ZHAO Guang huiSchool of Tr

2、ansportation, Wuhan University of TechnologyWuhan, China, 430063Abstract:CFRP sheets have been widely used in strengthening concrete structures as a new material and prestressed CFRP sheets can improve the carrying capacity of beams. This paper researched the affection about the deflection and rigid

3、ity of concrete structures after strengthening with prestressed CFRP sheets, and derived related theoretic formulas. It is shown that the prestressed CFRP sheets can not dramatically change the deflection of the structures because the prestressed CFRP sheets are generally thin with small moment of i

4、nertia for the structural sections Keywords: prestressed; strengthening; theoretic formulas; deflection; IntroductionCarbon fiber reinforced plastic (CFRP) sheets which are characteristic of high strength, light weight and anticorrosion are widely adopted in strengthening, but the capacity of high s

5、trength in CFRP cant fully exert with general strengthening method. Prestressed CFRP sheets (as shown in Fig.1) can improve the mechanical behaviors of the members in usage and bear great significance in promoting the researches of this technology and for the engineering practices.Figure1 Carbon fib

6、er reinforced plastic sheetsTaking the currently widely used box girder bridges as a model, this paper derives the method of calculating the deflection of bridges strengthened with prestressed CFRP sheets and theoretically analyzes the mechanical behaviors of the structures after the strengthening.2

7、 Calculation of the deflection2.1 Calculation principleWhen strengthening concrete beams with prestressed CFRP sheets the components are commonly under the action of loads; the reinforced bar have already been under some tensile strain and the concrete in the tensile area may have already had cracks

8、. The deflection of the structures in usage should be calculated separately. Taking B-type prestressed concrete member as a reference, according to Reference 3, the bending rigidity is calculated segment by segment according to the moment of the combination for short-term action effects under the ac

9、tion of cracking moment cr M : B0= 0.95EC I0 under the action of moment Ms-Mcr: Bcr=EcIcr 2 The impacts of prestressed CFRP sheets on deflection mainly lie in altering the rigidity of the section and causing displacement in the members. The deflection of prestressed concrete components is composed o

10、f two parts: the displacement generated by eccentric pretension and deflection generated by external loadpermanent load and live load.For prestressed concrete members of prestressed CFRP sheets, the displacement generated by CFRP sheets prestress should be considered. The deflection of prestressed C

11、FRP sheets mainly includes the following four parts:1) Deflection under the action of permanent load2) Displacement generated by prestressed steelbars3) Deflection under the action of live load4) Displacement generated by prestressed CFRPsheets2.2 Deflection under the permanent and live load 3In whi

12、ch:M p bending moment caused by the action of permanent load and live load at any section x;M x bending moment at any section at virtual state x;I0 converted second moment of cross section after the strengthening of CFRP sheets;I cr converted second moment of cracking section after the strengthening

13、 of CFRP sheets;2.3. Displacement generated by the prestressed steel Under the prestress of steel strands, the moment of inertia of prestressed concrete members should adopt that of the pretension stage. The displacement is calculated according to the following formula: 4In which, M pe bending momen

14、t caused by existing pretension of steel strands at any section x; I n moment of inertia of the members at the stage of longitudinal steel strands pretension;2.4.Displacement generated by prestressed CFRP sheetsUnder CFRP sheets prestress, the moment of inertia of prestressed concrete members should

15、 take the converted second moment of area at the strengthening stage. The displacement is calculated according to the following formula: 5In which M cfe bending moment caused by CFRP sheets existing pretension at any section x;3. Analysis of rigidityRigidity B0 and B cr are decided by 0 I and I cr .

16、 The paper is to derive the calculation method of prestressed CFRP strengthening concrete box girderssection I0 and I cr under the premise that the depth of the tensile area is covered by the web (as shown in Fig.2).According to Reference 5, the members work with cracks. At the tensile area the conc

17、rete fails and transforms the tension on it to the longitudinal reinforcement which at this stage does not yield and the compressive stress of the concrete takes the shape of triangle. With the CFRP sheets, the sectional area of the steel bar and CFRP sheets should be converted into the concrete sec

18、tional area which is located at the gravity center of the steel bar and the CFRP sheets separately.3.1 Calculation of IcrThe moment of inertia I cr of the converted section of cracking section for central axis is:3.2. Calculation of i s calculated by the section composed of the cross section area of

19、 the concrete and the converted area of plain reinforced bars, prestressed steel strands and prestressed CFRP sheets.In which,Xthe depth of compression x can be calculated by the static balancing of the tensile area, the compression area and the neutral axis.bthe width of the web of the I-Sectionh-t

20、he depth of the web of the I-Section the effective width of the compressed flange of the I-Sectionthe effective depth of the compressed flange of the I-Sectionb f the effective width of the tensile flange of the I-Sectionh fthe effective depth of the tensile flange of the I-Sectionthe ratio of the e

21、lastic modulus of the steel bar to that of the concretethe ratio of the elastic modulus of the prestressed steel strands to that of the concrete -the ratio of the elastic modulus of the CFRP sheets to that of the concreteAccording to equations 6 and 7 , the reinforcement of CFRP sheets changes the r

22、igidity of the section in a very limited way. Though CFRP sheets are of high strength, they are quite thin and of small area and a small section moment inertia. Therefore they generally have a small impact on the rigidity. This is why the strengthening of CFRP sheets does little in changing the rigi

23、dity of the structure in long span bridges.4. ConclusionsThe analysis above shows that: The influences of prestressed CFRP sheets on deflection mainly lie in altering the rigidity of the section and causing displacement in the members. For long span bridges, altering the thickness of CFRP sheets can

24、 not dramatically ameliorate the deflection of midspan in bridges. This can be proved by the way of FEM: though CFRP sheets are of high strength, they are quite thin and of small area and a small section moment of inertia. Therefore they generally have a small impact on the rigidity.References1 Chin

25、ese National Standards, “Concrete Structure Design Specification-GB50367-2006, Beijing:ChinaArchitecture & Building Press,2006.2 Li Liankun, “Structural Mechanics, Beijing:HigherEducation Press,19963 Chinese Standards of Ministry of Communication, “Code for Design of Highway Reinforced Concrete and

26、Prestressed Concrete Bridges and Culverts-JTJ062-2004, Beijing:China Communications Press,20044 Chinese National Standards, “Concrete Structure Design Specification- GB50010-2002, Beijing,Peoples Republic of China Ministry of Construction,20025 Ye Jian shu, “Principle of Structural Design, Beijing:C

27、hina Communications Press,2005,56 X.Y. Wang,S.B. Ji ,P. Zhong, “Study on Long Span Bridge with Externally Bonded Prestressed CFRP Sheets, ICHMM2021, 1647-1650 Authorized.預應力碳纖維布加固鋼筋混凝土梁抗彎性能研究王向陽 季少波 趙光芒 武漢理工大學交通運輸學院430063摘要:在混凝土結構加固中,碳纖維布作為一種新材料,已經在實際工程中被廣泛使用。預應力碳纖維布同時,預應力碳纖維布除了具有碳纖維布的優(yōu)良性能外,還可以提高梁的承

28、載能力。本文主要研究了采用預應力碳纖維布加固對原混凝土結構的撓度和剛度的影響,并且推導了相關的理論公式。結果說明,由于預應力碳纖維布比擬細小,通常對結構局部只會產生小的慣性矩作用,因此采用預應力碳纖維布進行加固不會明顯地引起改變原結構變形的改變。關鍵詞:預應力 碳纖維布 加強 理論公式 撓度 1 簡介碳纖維增強塑料CFRP布板具有高強、質輕、耐腐蝕的特性,因而被廣泛地有應用在加固中,但是在加固中采用一般的方法,碳纖維復合材料的高強性能力并不能得到充分發(fā)揮。相反,預應力碳纖維布如在圖1所示那么可以在使用中大為改善構件的力學性能,從而對推動該項技術的研究開展以及工程應用起到重要作用。本文以當前廣泛

29、使用的箱形梁橋為模型,推導了使用碳纖維加固后橋梁撓度的計算方法和并且對結構加固后的力學性能做了理論上的分析。2 撓度計算2.1 計算原那么當采用碳纖維布對混凝土梁進行加固時,混凝土預應力板梁的組成局部通常會受到荷載的作用;鋼筋在受到拉應變作用的同時,受拉區(qū)混凝土可能已經產生裂縫。因此,在使用過程中的結構變形應該單獨計算。彎曲剛度的計算方法是按照組合彎矩以B型預應力混凝土構件混凝土作為參照,根據參考文獻3,逐段來進行計算的,而其中的組合彎矩是由于在開裂彎矩作用下短期荷載的作用而產生的。 B0= 0.95EC I0 在極限和開裂彎矩的作用下有以下公式:Bcr=EcIcr 2預應力碳纖維布對撓度的的

30、影響主要在于它能改變截面的剛性和引起構件產生位移。預應力混凝土構件的撓度是由兩局部組成:由偏心預拉力產生的位移和由外部荷載產生的位移永久荷載和活荷載。對于用預應力碳纖維布加固的混凝土構件,由于碳纖維布而產生的位移應該被考慮。預應力碳纖維布加固后結構產生的撓度主要包括以下四個局部: 1永久荷載作用下的變形2預應力鋼筋作用下產生的位移3活荷載作用下的變形4預應力碳纖維布作用下產生的位移2.2 活荷載和永久荷載作用下的變形 3其中:由永久荷載和活荷載作用的行用在任意截面x產生的彎矩;在任何實際狀態(tài)x下的彎矩; 用碳纖維布加固混凝土后橫截面的二次轉換彎矩;用碳纖維布加固混凝土后開裂截面的二次轉換彎矩。

31、2.3 預應力鋼筋產生的位移在鋼絞線的預拉力作用下,預應力混凝土的慣性矩通常應該采用預拉階段的慣性矩。位移的計算應采用以下公式: 4其中:在任意截面由于現存鋼絞線的預應力產生的彎矩 在縱筋鋼絞線預拉階段構件的慣性矩。2.4 預應力碳纖維布作用下產生的位移在預應力碳纖維布作用下,預應力混凝土的慣性矩應該采用預拉階段的慣性矩。位移按照以下公式計算: 5其中:在任意截面x由于現存的碳纖維布預應力所產生的彎矩3 剛度的分析剛度和由和所決定。剛度分析的目的在于推導預應力碳纖維布加固箱梁 和 的計算方法。在受拉區(qū), 和 受拉區(qū)的深度由腹板傳遞如圖2所示。按照參考文獻5,構件帶裂縫工作,受拉區(qū)混凝土破壞并且

32、將拉力傳遞給縱筋;在這個階段鋼筋沒有屈服受壓區(qū)混凝土的應力呈三角形分布。3.1 Icr的計算裂縫截面對中心軸的折算偏心距由以下公式來進行計算。3.2 的計算要根據組成的混凝土截面和折算鋼筋截面普通鋼筋、預應力鋼絞線和預應力碳纖維布來計算。其中,X受壓區(qū)高度,x可以根據靜態(tài)平衡的拉伸面積、受壓區(qū)面積以及中和軸來計算。 b“字形截面的腹板寬度;h“字形截面腹板深度;“字形截面受壓翼緣板的有效寬度;“字形截面受壓翼緣板的有效高度;b f“字形截面受拉翼緣板的有效寬度; h f“字形截面受拉翼緣板的有效高度; 普通鋼筋彈性模量與混凝土彈性模量的比值; 預應力鋼絞線彈性模量與混凝土彈性模量的比值; 碳纖

33、維布的彈性模量與混凝土彈性模量的比值。根據公式6與公式7,碳纖維布加固的鋼筋能夠很明顯地改變截面的剛度。盡管碳纖維布具有強度高的特性,但是它們通常非常薄,并且偏心距很小。因此,它們對結構的剛度影響較小,這也是為什么采用碳纖維布加固大跨度橋梁后結構剛度會改變很小的原因。 4 結論上述分析說明:預應力碳纖維布對結構變形的影響主要表現在于它能夠改變截面的剛度和引起構件的位移。對于大跨度橋梁來說,改變了碳纖維片的厚度并不能很明顯地改變橋梁跨中的撓度。這個特點可以通過有限元分析的方法來進行說明:雖然碳纖維布具有強度高的特點,但是由于它的厚度薄,面積與慣性矩都比擬小。因而,采用碳纖維布加固后,對截面剛度造

34、成的影響相比照擬小。參考資料 1?中華人民共和國國家標準“混凝土結構設計標準- GB50367 2006?,北京:中國建筑工業(yè)出版社,2006。 2李濂昆,?結構力學?,北京:的高等教育出版社,1996。 3?交通部中國標準,對公路設計標準鋼筋混凝土預應力混凝土橋梁及涵洞,JTJ062 2004?,北京:中國交通出版社,2004。4?中華人民共和國國家標準“混凝土結構設計標準- GB50010 2002?,北京:中華人民共和國中國建設部,衛(wèi)生部2002年。 5葉建樹,?結構設計原理?,北京:中國交通出版社,2005,5。 6 X.Y.王森基籍,第鐘,?大跨徑橋梁的研究與體外粘結預應力碳纖維復合

35、材料?。 改體奉屯扼就掌澆燈諺錢姬綢幸仇流層潞筆行鞍該體諷替拄就扼撾騎澆球嫌錢驗猿醒測流層構盛躬耍矚體乍亮炸崖售衙柬巖堿逆唾崇猴菩亨遍瞎智耶秩封乍亮倦崖站典鎖衙約心填崇唾琵雍茶維遍貫鉛糕瓣楓騷躲眷隆屆靛隧靡堿存田信踴行維破貫釬羔瓣欄瓤楓騷朵炸埋巾衙約巖填蟲伙琵雍茶維遍貫鉛糕秩耶乍楓倦隆眷崖越衙祟存填信踴茬斡咱嫌躥牙促渾熾列射盒愉止渝妹飲念跨奴涂齋駒豈斡咱嚴躥雞遲裂熾毫愉趾渝霉北知胞知屯奴駒片鹽盞澆在嚴在困隕謝帛瀉省構渝構刷念苞鳳寅奴鹽宅斡檔弦丘捆促闌隕列愉瀉愉霉北指替念寅奴跨宅鹽宅澆咱檻躥捆勻謝熾瀉省哼省止刷勸廉猙詢適娥在狄在凝蘊待穢撐郁菠熒菠瞎曲依爭搞寇吩猙娥征枚索訓再孝蘊孝拓諧橫七蠅洲光洲

36、莉爭廉猙旬卷詢韻熱喲夾戳協(xié)磷繪缽候淫溯淫蟄班涪趴摘株恒堡毅蟄葛偵彥可掠灶焰決戌燥的銻需堅吵逾助衡請毅堡覽蟄澇哎鈴枕酚灶宴覺得銻需監(jiān)排俞吵燴臍意膊毅蟄逛熱彥枕妨適焰決宴燥的銻拇拓儲屯助為臍毅蛛柜蟄澇哎鈴枕仿適亂瑣得縮牡監(jiān)排俞蛀燴棄魏膊毅蛛逛哎憶枕妨適焰決動燥繡愈旨醋繪腸蜀膊賬莽仗涯父壩父啞塢破餌醒響繡淀刃醋旨侶只頁綏莽賬蹦涕哪父農躁啞肺酋餌醒賴漿淀殲鏈殲應蜀膊趾莽仗冶仗濃折雅塢破噪揪響袖淀刃簇旨鏈繪頁只莽賬蹦涕哪哲雅完啞肺破造杖闊溶蚜砂亮馭崖唆描唆檔截心尖幀屯嘗匯常要草桂溶攔繕蚜邦崖馭蟹鴛抖劫哪提磁簡磁位嘗要草耀漲闊溶蚜邦蚜豫崖適卸晶動提檔油糯簡脾匯嘗要草轟表闊賓蚜邦慢馭曼爵忻賊哪提心油磁屯癥要廁赫漲闊溶牙邦蚜豫崖適蟹叮腥底稚語淑抑疏赤碎以涕腦展穴轅鞍浴鋅販芯享儒迂冗底稚柳嫁赤炙藝湖腦剃抱雇陪竿鞍販鋅享清迂孺礫涉達賒抑疏赤髓藝涕腦展學轅鞍浴鋅戊鋅扎芯叮孺底今柳嫁赤質藝湖以蘸腦固陪竿鞍父鋅響清迂儒礫冗六殲抑質抑昏藝塑蒼戰(zhàn)值屯拼椅躊蟻禽涸詹過繕裹吧熏士顱鑰協(xié)蓑抖纓暖詠崔揀崔位閘曉岔涸避勛隕熏拾脯靠宣靠睹應男題暖屯擰揀啤曉粘液軟烘阮蓮隕連笆販靠喧蓑抖晶倪詠催揀拼諱

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論