![2022屆浙江省鎮(zhèn)海市鎮(zhèn)海高三第三次模擬考試數(shù)學(xué)試卷含解析_第1頁](http://file4.renrendoc.com/view/b2cf9f73dd4714a3b037c0852cd47a1e/b2cf9f73dd4714a3b037c0852cd47a1e1.gif)
![2022屆浙江省鎮(zhèn)海市鎮(zhèn)海高三第三次模擬考試數(shù)學(xué)試卷含解析_第2頁](http://file4.renrendoc.com/view/b2cf9f73dd4714a3b037c0852cd47a1e/b2cf9f73dd4714a3b037c0852cd47a1e2.gif)
![2022屆浙江省鎮(zhèn)海市鎮(zhèn)海高三第三次模擬考試數(shù)學(xué)試卷含解析_第3頁](http://file4.renrendoc.com/view/b2cf9f73dd4714a3b037c0852cd47a1e/b2cf9f73dd4714a3b037c0852cd47a1e3.gif)
![2022屆浙江省鎮(zhèn)海市鎮(zhèn)海高三第三次模擬考試數(shù)學(xué)試卷含解析_第4頁](http://file4.renrendoc.com/view/b2cf9f73dd4714a3b037c0852cd47a1e/b2cf9f73dd4714a3b037c0852cd47a1e4.gif)
![2022屆浙江省鎮(zhèn)海市鎮(zhèn)海高三第三次模擬考試數(shù)學(xué)試卷含解析_第5頁](http://file4.renrendoc.com/view/b2cf9f73dd4714a3b037c0852cd47a1e/b2cf9f73dd4714a3b037c0852cd47a1e5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為( )AB4CD2某幾何體的三視圖如圖所示,則該幾何體的最長棱的長為( )ABCD3已知直線yk(x1)與拋物線C:y24x交于A,B兩點(diǎn),直線y2
2、k(x2)與拋物線D:y28x交于M,N兩點(diǎn),設(shè)|AB|2|MN|,則( )A16B16C120D124設(shè)函數(shù)的定義域?yàn)?,命題:,的否定是( )A,B,C,D,5公元前世紀(jì),古希臘哲學(xué)家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當(dāng)比賽開始后,若阿基里斯跑了米,此時(shí)烏龜便領(lǐng)先他米,當(dāng)阿基里斯跑完下一個(gè)米時(shí),烏龜先他米,當(dāng)阿基里斯跑完下-個(gè)米時(shí),烏龜先他米.所以,阿基里斯永遠(yuǎn)追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時(shí),烏龜爬行的總距離為( )A米B米C米D米6在中,是的中點(diǎn),點(diǎn)在上且滿足,則等于( )
3、ABCD7已知為等比數(shù)列,則( )A9B9CD8執(zhí)行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關(guān)于的判斷條件是( )ABCD9某市氣象部門根據(jù)2018年各月的每天最高氣溫平均數(shù)據(jù),繪制如下折線圖,那么,下列敘述錯誤的是( )A各月最高氣溫平均值與最低氣溫平均值總體呈正相關(guān)B全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大C全年中各月最低氣溫平均值不高于10C的月份有5個(gè)D從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢10已知定義在上的奇函數(shù),其導(dǎo)函數(shù)為,當(dāng)時(shí),恒有則不等式的解集為( )ABC或D或11是的( )條件A充分不必要B必要不充分C充要D
4、既不充分也不必要12設(shè)全集U=R,集合,則( )Ax|-1 x4Bx|-4x1Cx|-1x4Dx|-4x1二、填空題:本題共4小題,每小題5分,共20分。13若函數(shù),則使得不等式成立的的取值范圍為_.14已知全集,集合,則_.15若,則_.16設(shè)函數(shù),若在上的最大值為,則_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù)(1)時(shí),求不等式解集;(2)若的解集包含于,求a的取值范圍18(12分)在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足.(1)求B;(2)若,AD為BC邊上的中線,當(dāng)?shù)拿娣e取得最大值時(shí),求AD的長.19(12分)如圖,在四棱錐中,底面
5、是平行四邊形,平面,是棱上的一點(diǎn),滿足平面.()證明:;()設(shè),若為棱上一點(diǎn),使得直線與平面所成角的大小為30,求的值.20(12分)如圖,在四棱錐中,是邊長為的正方形的中心,平面,為的中點(diǎn).()求證:平面平面; ()若,求二面角的余弦值.21(12分)對于正整數(shù),如果個(gè)整數(shù)滿足,且,則稱數(shù)組為的一個(gè)“正整數(shù)分拆”.記均為偶數(shù)的“正整數(shù)分拆”的個(gè)數(shù)為均為奇數(shù)的“正整數(shù)分拆”的個(gè)數(shù)為.()寫出整數(shù)4的所有“正整數(shù)分拆”;()對于給定的整數(shù),設(shè)是的一個(gè)“正整數(shù)分拆”,且,求的最大值;()對所有的正整數(shù),證明:;并求出使得等號成立的的值.(注:對于的兩個(gè)“正整數(shù)分拆”與,當(dāng)且僅當(dāng)且時(shí),稱這兩個(gè)“正整
6、數(shù)分拆”是相同的.)22(10分)已知拋物線:y22px(p0)的焦點(diǎn)為F,P是拋物線上一點(diǎn),且在第一象限,滿足(2,2)(1)求拋物線的方程;(2)已知經(jīng)過點(diǎn)A(3,2)的直線交拋物線于M,N兩點(diǎn),經(jīng)過定點(diǎn)B(3,6)和M的直線與拋物線交于另一點(diǎn)L,問直線NL是否恒過定點(diǎn),如果過定點(diǎn),求出該定點(diǎn),否則說明理由參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1A【解析】模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的的值,當(dāng),退出循環(huán),輸出結(jié)果.【詳解】程序運(yùn)行過程如下:,;,;,;,;,;,;,退出循環(huán),輸出結(jié)果為,故選:A.【點(diǎn)睛】該題
7、考查的是有關(guān)程序框圖的問題,涉及到的知識點(diǎn)有判斷程序框圖輸出結(jié)果,屬于基礎(chǔ)題目.2D【解析】先根據(jù)三視圖還原幾何體是一個(gè)四棱錐,根據(jù)三視圖的數(shù)據(jù),計(jì)算各棱的長度.【詳解】根據(jù)三視圖可知,幾何體是一個(gè)四棱錐,如圖所示:由三視圖知: , 所以,所以,所以該幾何體的最長棱的長為故選:D【點(diǎn)睛】本題主要考查三視圖的應(yīng)用,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.3D【解析】分別聯(lián)立直線與拋物線的方程,利用韋達(dá)定理,可得,然后計(jì)算,可得結(jié)果.【詳解】設(shè), 聯(lián)立則,因?yàn)橹本€經(jīng)過C的焦點(diǎn), 所以.同理可得,所以故選:D.【點(diǎn)睛】本題考查的是直線與拋物線的交點(diǎn)問題,運(yùn)用拋物線的焦點(diǎn)弦求參數(shù),屬基礎(chǔ)題。4D
8、【解析】根據(jù)命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因?yàn)椋海侨Q命題,所以其否定是特稱命題,即,.故選:D【點(diǎn)睛】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎(chǔ)題.5D【解析】根據(jù)題意,是一個(gè)等比數(shù)列模型,設(shè),由,解得,再求和.【詳解】根據(jù)題意,這是一個(gè)等比數(shù)列模型,設(shè),所以,解得,所以 .故選:D【點(diǎn)睛】本題主要考查等比數(shù)列的實(shí)際應(yīng)用,還考查了建模解模的能力,屬于中檔題.6B【解析】由M是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質(zhì),即可求解【詳解】解:M是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM
9、上且滿足P是三角形ABC的重心 又AM1故選B【點(diǎn)睛】判斷P點(diǎn)是否是三角形的重心有如下幾種辦法:定義:三條中線的交點(diǎn)性質(zhì):或取得最小值坐標(biāo)法:P點(diǎn)坐標(biāo)是三個(gè)頂點(diǎn)坐標(biāo)的平均數(shù)7C【解析】根據(jù)等比數(shù)列的下標(biāo)和性質(zhì)可求出,便可得出等比數(shù)列的公比,再根據(jù)等比數(shù)列的性質(zhì)即可求出.【詳解】,又,可解得或設(shè)等比數(shù)列的公比為,則當(dāng)時(shí), ;當(dāng)時(shí), ,.故選:C【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.8B【解析】根據(jù)程序框圖,逐步執(zhí)行,直到的值為63,結(jié)束循環(huán),即可得出判斷條件.【詳解】執(zhí)行框圖如下:初始值:,第一步:,此時(shí)不能輸出,繼續(xù)循環(huán);第二步:,此時(shí)不能輸出,繼續(xù)循
10、環(huán);第三步:,此時(shí)不能輸出,繼續(xù)循環(huán);第四步:,此時(shí)不能輸出,繼續(xù)循環(huán);第五步:,此時(shí)不能輸出,繼續(xù)循環(huán);第六步:,此時(shí)要輸出,結(jié)束循環(huán);故,判斷條件為.故選B【點(diǎn)睛】本題主要考查完善程序框圖,只需逐步執(zhí)行框圖,結(jié)合輸出結(jié)果,即可確定判斷條件,屬于??碱}型.9D【解析】根據(jù)折線圖依次判斷每個(gè)選項(xiàng)得到答案.【詳解】由繪制出的折線圖知:在A中,各月最高氣溫平均值與最低氣溫平均值為正相關(guān),故A正確;在B中,全年中,2月的最高氣溫平均值與最低氣溫平均值的差值最大,故B正確;在C中,全年中各月最低氣溫平均值不高于10的月份有1月,2月,3月,11月,12月,共5個(gè),故C正確;在D中,從2018年7月至1
11、2月該市每天最高氣溫平均值與最低氣溫平均值,先上升后下降,故D錯誤.故選:D.【點(diǎn)睛】本題考查了折線圖,意在考查學(xué)生的理解能力.10D【解析】先通過得到原函數(shù)為增函數(shù)且為偶函數(shù),再利用到軸距離求解不等式即可.【詳解】構(gòu)造函數(shù),則由題可知,所以在時(shí)為增函數(shù);由為奇函數(shù),為奇函數(shù),所以為偶函數(shù);又,即即又為開口向上的偶函數(shù)所以,解得或故選:D【點(diǎn)睛】此題考查根據(jù)導(dǎo)函數(shù)構(gòu)造原函數(shù),偶函數(shù)解不等式等知識點(diǎn),屬于較難題目.11B【解析】利用充分條件、必要條件與集合包含關(guān)系之間的等價(jià)關(guān)系,即可得出?!驹斀狻吭O(shè)對應(yīng)的集合是,由解得且 對應(yīng)的集合是 ,所以,故是的必要不充分條件,故選B?!军c(diǎn)睛】本題主要考查充
12、分條件、必要條件的判斷方法集合關(guān)系法。設(shè) ,如果,則是的充分條件;如果B則是的充分不必要條件;如果,則是的必要條件;如果,則是的必要不充分條件。12C【解析】解一元二次不等式求得集合,由此求得【詳解】由,解得或.因?yàn)榛?,所?故選:C【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查集合補(bǔ)集的概念和運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】分,兩種情況代入討論即可求解.【詳解】,當(dāng)時(shí),符合;當(dāng)時(shí),不滿足.故答案為:【點(diǎn)睛】本題主要考查了分段函數(shù)的計(jì)算,考查了分類討論的思想.14【解析】根據(jù)題意可得出,然后進(jìn)行補(bǔ)集的運(yùn)算即可【詳解】根據(jù)題意知,故答案為:【點(diǎn)睛】
13、本題考查列舉法的定義、全集的定義、補(bǔ)集的運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題15【解析】因?yàn)?,所?因?yàn)椋?,又,所以,所?16【解析】求出函數(shù)的導(dǎo)數(shù),由在上,可得在上單調(diào)遞增,則函數(shù)最大值為,即可求出參數(shù)的值.【詳解】解:定義域?yàn)椋谏蠁握{(diào)遞增,故在上的最大值為故答案為:【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)(2)【解析】(1) 代入可得對分類討論即可得不等式的解集; (2)根據(jù)不等式在上恒成立去絕對值化簡可得再去絕對值即可得關(guān)于 的不等式組解不等式組即可求得的取值范圍【詳解】(1)當(dāng)時(shí),不等式可化為
14、,當(dāng)時(shí),不等式為,解得;當(dāng)時(shí),不等式為,無解;當(dāng)時(shí),不等式為,解得,綜上,原不等式的解集為(2)因?yàn)榈慕饧?,則不等式可化為,即解得,由題意知,解得,所以實(shí)數(shù)a的取值范圍是【點(diǎn)睛】本題考查了絕對值不等式的解法分類討論解絕對值不等式的應(yīng)用,含參數(shù)不等式的解法.難度一般.18(1);(2).【解析】(1)利用正弦定理及可得,從而得到;(2)在中,利用余弦定可得,而,故當(dāng)時(shí),的面積取得最大值,此時(shí),在中,再利用余弦定理即可解決.【詳解】(1)由正弦定理及已知得,結(jié)合,得,因?yàn)椋?,由,?(2)在中,由余弦定得,因?yàn)椋?,?dāng)且僅當(dāng)時(shí),的面積取得最大值,此時(shí).在中,由余弦定理得.即.【點(diǎn)睛】本
15、題考查正余弦定理解三角形,涉及到基本不等式求最值,考查學(xué)生的計(jì)算能力,是一道容易題.19()證明見解析()【解析】()由平面,可得,又因?yàn)槭堑闹悬c(diǎn),即得證;()如圖建立空間直角坐標(biāo)系,設(shè),計(jì)算平面的法向量,由直線與平面所成角的大小為30,列出等式,即得解.【詳解】()如圖,連接交于點(diǎn),連接,則是平面與平面的交線,因?yàn)槠矫?,故,又因?yàn)槭堑闹悬c(diǎn),所以是的中點(diǎn),故.()由條件可知,所以,故以為坐標(biāo)原點(diǎn),為軸,為軸,為軸建立空間直角坐標(biāo)系,則,設(shè),則,設(shè)平面的法向量為,則,即,故取因?yàn)橹本€與平面所成角的大小為30所以,即,解得,故此時(shí).【點(diǎn)睛】本題考查了立體幾何和空間向量綜合,考查了學(xué)生邏輯推理,空間
16、想象,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.20()詳見解析;().【解析】()由正方形的性質(zhì)得出,由平面得出,進(jìn)而可推導(dǎo)出平面,再利用面面垂直的判定定理可證得結(jié)論;()取的中點(diǎn),連接、,以、所在直線分別為、軸建立空間直角坐標(biāo)系,利用空間向量法能求出二面角的余弦值.【詳解】()是正方形,平面,平面,、平面,且,平面 ,又平面,平面平面;()取的中點(diǎn),連接、,是正方形,易知、兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),以、所在直線分別為、軸建立如圖所示的空間直角坐標(biāo)系,在中,、,設(shè)平面的一個(gè)法向量,由,得,令,則,.設(shè)平面的一個(gè)法向量,由,得,取,得,得.,二面角為鈍二面角,二面角的余弦值為.【點(diǎn)睛】本題考查面面垂直的證明
17、,同時(shí)也考查了利用空間向量法求解二面角,考查推理能力與計(jì)算能力,屬于中等題.21 () ,;() 為偶數(shù)時(shí),為奇數(shù)時(shí),;()證明見解析,【解析】()根據(jù)題意直接寫出答案.()討論當(dāng)為偶數(shù)時(shí),最大為,當(dāng)為奇數(shù)時(shí),最大為,得到答案.() 討論當(dāng)為奇數(shù)時(shí),至少存在一個(gè)全為1的拆分,故,當(dāng)為偶數(shù)時(shí), 根據(jù)對應(yīng)關(guān)系得到,再計(jì)算,得到答案.【詳解】()整數(shù)4的所有“正整數(shù)分拆”為:,.()當(dāng)為偶數(shù)時(shí),時(shí),最大為;當(dāng)為奇數(shù)時(shí),時(shí),最大為;綜上所述:為偶數(shù),最大為,為奇數(shù)時(shí),最大為.()當(dāng)為奇數(shù)時(shí),至少存在一個(gè)全為1的拆分,故;當(dāng)為偶數(shù)時(shí),設(shè)是每個(gè)數(shù)均為偶數(shù)的“正整數(shù)分拆”,則它至少對應(yīng)了和的均為奇數(shù)的“正整
18、數(shù)分拆”,故.綜上所述:.當(dāng)時(shí),偶數(shù)“正整數(shù)分拆”為,奇數(shù)“正整數(shù)分拆”為,;當(dāng)時(shí),偶數(shù)“正整數(shù)分拆”為,奇數(shù)“正整數(shù)分拆”為,故;當(dāng)時(shí),對于偶數(shù)“正整數(shù)分拆”,除了各項(xiàng)不全為的奇數(shù)拆分外,至少多出一項(xiàng)各項(xiàng)均為的“正整數(shù)分拆”,故.綜上所述:使成立的為:或.【點(diǎn)睛】本土考查了數(shù)列的新定義問題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.22(1)y24x;(2)直線NL恒過定點(diǎn)(3,0),理由見解析.【解析】(1)根據(jù)拋物線的方程,求得焦點(diǎn)F(,0),利用(2,2),表示點(diǎn)P的坐標(biāo),再代入拋物線方程求解.(2)設(shè)M(x0,y0),N(x1,y1),L(x2,y2),表示出MN的方程y和ML的方程y,因?yàn)锳(3,2),B(3,6)在這兩條直線上,分別代入兩直線的方程可得y1y212,然后表示直線NL的方程為:yy1(x),代入化簡求解.【詳解】(1)由拋物線的方程可得焦點(diǎn)F(,0),滿足(2,2)的P的坐標(biāo)為(2,2),P在拋物線上,所以(2)22
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年計(jì)算器及貨幣專用設(shè)備合作協(xié)議書
- 2025年棕、藤、草制品合作協(xié)議書
- 2025年壓力校驗(yàn)器合作協(xié)議書
- 2025年高壓化成箔合作協(xié)議書
- 2022-2023學(xué)年山東省德州市夏津縣四年級(上)期末數(shù)學(xué)試卷
- 惠州惠東縣幼兒教師招聘幼兒考試試題及答案
- 滬教版四年級下冊數(shù)學(xué)小數(shù)的加減法測試題
- 歷年高級財(cái)務(wù)會計(jì)試題及部分答案
- 四年級下冊人教版數(shù)學(xué)教學(xué)計(jì)劃
- 2025年交通事故一次性終結(jié)賠償協(xié)議范文(2篇)
- 2025年魯泰集團(tuán)招聘170人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024-2025學(xué)年成都高新區(qū)七上數(shù)學(xué)期末考試試卷【含答案】
- 企業(yè)員工食堂管理制度框架
- 電力溝施工組織設(shè)計(jì)-電纜溝
- 2024年煤礦安全生產(chǎn)知識培訓(xùn)考試必答題庫及答案(共190題)
- 《法律援助》課件
- 2024年山東鐵投集團(tuán)招聘筆試參考題庫含答案解析
- (完整word版)中國銀行交易流水明細(xì)清單模版
- 軟件功能點(diǎn)估算.xls
- 燃?xì)廨啓C(jī)LM2500介紹
- (精選)淺談在小學(xué)數(shù)學(xué)教學(xué)中如何進(jìn)行有效提問
評論
0/150
提交評論