2022屆四川省遂寧市射洪縣射洪高三第二次診斷性檢測數(shù)學試卷含解析_第1頁
2022屆四川省遂寧市射洪縣射洪高三第二次診斷性檢測數(shù)學試卷含解析_第2頁
2022屆四川省遂寧市射洪縣射洪高三第二次診斷性檢測數(shù)學試卷含解析_第3頁
2022屆四川省遂寧市射洪縣射洪高三第二次診斷性檢測數(shù)學試卷含解析_第4頁
2022屆四川省遂寧市射洪縣射洪高三第二次診斷性檢測數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知函數(shù)在區(qū)間有三個零點,且,若,則的最小正周期為( )ABCD2ABC中,如果lgcosA=lgsinC-lgsinB=-lg2,則ABC的形狀是( )A等邊三角形B直角三角形C等

2、腰三角形D等腰直角三角形3由曲線yx2與曲線y2x所圍成的平面圖形的面積為()A1BCD4把函數(shù)圖象上各點的橫坐標伸長為原來的2倍,縱坐標不變,再將圖象向右平移個單位,那么所得圖象的一個對稱中心為( )ABCD5設(shè)為定義在上的奇函數(shù),當時,(為常數(shù)),則不等式的解集為( )ABCD6已知底面是等腰直角三角形的三棱錐P-ABC的三視圖如圖所示,俯視圖中的兩個小三角形全等,則( )APA,PB,PC兩兩垂直B三棱錐P-ABC的體積為CD三棱錐P-ABC的側(cè)面積為7已知橢圓的左、右焦點分別為、,過的直線交橢圓于A,B兩點,交y軸于點M,若、M是線段AB的三等分點,則橢圓的離心率為( )ABCD8已知

3、等邊ABC內(nèi)接于圓:x2+ y2=1,且P是圓上一點,則的最大值是( )AB1CD29 “”是“函數(shù)的圖象關(guān)于直線對稱”的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件10已知三棱錐且平面,其外接球體積為( )ABCD11的圖象如圖所示,若將的圖象向左平移個單位長度后所得圖象與的圖象重合,則可取的值的是( )ABCD12函數(shù)的大致圖象為ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知公差大于零的等差數(shù)列中,、依次成等比數(shù)列,則的值是_14展開式中項的系數(shù)是_15若函數(shù)的圖像向左平移個單位得到函數(shù)的圖像.則在區(qū)間上的最小值為_.16已知實數(shù),滿足則的取值范

4、圍是_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知數(shù)列滿足:對任意,都有.(1)若,求的值;(2)若是等比數(shù)列,求的通項公式;(3)設(shè),求證:若成等差數(shù)列,則也成等差數(shù)列.18(12分)已知拋物線:的焦點為,過上一點()作兩條傾斜角互補的直線分別與交于,兩點,(1)證明:直線的斜率是1;(2)若,成等比數(shù)列,求直線的方程.19(12分)已知函數(shù)(1)求函數(shù)在處的切線方程(2)設(shè)函數(shù),對于任意,恒成立,求的取值范圍.20(12分)已知矩陣的一個特征值為4,求矩陣A的逆矩陣.21(12分)己知等差數(shù)列的公差,且,成等比數(shù)列.(1)求使不等式成立的最大自然數(shù)n;

5、(2)記數(shù)列的前n項和為,求證:.22(10分)已知三點在拋物線上.()當點的坐標為時,若直線過點,求此時直線與直線的斜率之積;()當,且時,求面積的最小值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】根據(jù)題意,知當時,由對稱軸的性質(zhì)可知和,即可求出,即可求出的最小正周期.【詳解】解:由于在區(qū)間有三個零點,當時,由對稱軸可知,滿足,即.同理,滿足,即,所以最小正周期為:.故選:C.【點睛】本題考查正弦型函數(shù)的最小正周期,涉及函數(shù)的對稱性的應用,考查計算能力.2B【解析】化簡得lgcosAlgsinCsinBlg2,即

6、cosA=sinCsinB=12,結(jié)合0A, 可求A=3,得B+C=23代入sinC12sinB,從而可求C,B,進而可判斷.【詳解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosAlgsinCsinBlg2,cosA=sinCsinB=12,0A,A=3,B+C=23,sinC12sinB12sin23-C34cosC+14sinC,tanC33,C6,B2.故選:B【點睛】本題主要考查了對數(shù)的運算性質(zhì)的應用,兩角差的正弦公式的應用,解題的關(guān)鍵是靈活利用基本公式,屬于基礎(chǔ)題3B【解析】首先求得兩曲線的交點坐標,據(jù)此可確定積分區(qū)間,然后利用定積分的幾何意義求解面積值即可.

7、【詳解】聯(lián)立方程:可得:,結(jié)合定積分的幾何意義可知曲線yx2與曲線y2x所圍成的平面圖形的面積為:.本題選擇B選項.【點睛】本題主要考查定積分的概念與計算,屬于中等題.4D【解析】試題分析:把函數(shù)圖象上各點的橫坐標伸長為原來的倍(縱坐標不變),可得的圖象;再將圖象向右平移個單位,可得的圖象,那么所得圖象的一個對稱中心為,故選D.考點:三角函數(shù)的圖象與性質(zhì).5D【解析】由可得,所以,由為定義在上的奇函數(shù)結(jié)合增函數(shù)+增函數(shù)=增函數(shù),可知在上單調(diào)遞增,注意到,再利用函數(shù)單調(diào)性即可解決.【詳解】因為在上是奇函數(shù).所以,解得,所以當時,且時,單調(diào)遞增,所以在上單調(diào)遞增,因為,故有,解得.故選:D.【點睛

8、】本題考查利用函數(shù)的奇偶性、單調(diào)性解不等式,考查學生對函數(shù)性質(zhì)的靈活運用能力,是一道中檔題.6C【解析】根據(jù)三視圖,可得三棱錐P-ABC的直觀圖,然后再計算可得.【詳解】解:根據(jù)三視圖,可得三棱錐P-ABC的直觀圖如圖所示,其中D為AB的中點,底面ABC.所以三棱錐P-ABC的體積為,、不可能垂直,即不可能兩兩垂直,.三棱錐P-ABC的側(cè)面積為.故正確的為C.故選:C.【點睛】本題考查三視圖還原直觀圖,以及三棱錐的表面積、體積的計算問題,屬于中檔題.7D【解析】根據(jù)題意,求得的坐標,根據(jù)點在橢圓上,點的坐標滿足橢圓方程,即可求得結(jié)果.【詳解】由已知可知,點為中點,為中點,故可得,故可得;代入橢

9、圓方程可得,解得,不妨取,故可得點的坐標為,則,易知點坐標,將點坐標代入橢圓方程得,所以離心率為,故選:D.【點睛】本題考查橢圓離心率的求解,難點在于根據(jù)題意求得點的坐標,屬中檔題.8D【解析】如圖所示建立直角坐標系,設(shè),則,計算得到答案.【詳解】如圖所示建立直角坐標系,則,設(shè),則.當,即時等號成立.故選:.【點睛】本題考查了向量的計算,建立直角坐標系利用坐標計算是解題的關(guān)鍵.9A【解析】先求解函數(shù)的圖象關(guān)于直線對稱的等價條件,得到,分析即得解.【詳解】若函數(shù)的圖象關(guān)于直線對稱,則,解得,故“”是“函數(shù)的圖象關(guān)于直線對稱”的充分不必要條件故選:A【點睛】本題考查了充分不必要條件的判斷,考查了學

10、生邏輯推理,概念理解,數(shù)學運算的能力,屬于基礎(chǔ)題.10A【解析】由,平面,可將三棱錐還原成長方體,則三棱錐的外接球即為長方體的外接球,進而求解.【詳解】由題,因為,所以,設(shè),則由,可得,解得,可將三棱錐還原成如圖所示的長方體,則三棱錐的外接球即為長方體的外接球,設(shè)外接球的半徑為,則,所以,所以外接球的體積.故選:A【點睛】本題考查三棱錐的外接球體積,考查空間想象能力.11B【解析】根據(jù)圖象求得函數(shù)的解析式,即可得出函數(shù)的解析式,然后求出變換后的函數(shù)解析式,結(jié)合題意可得出關(guān)于的等式,即可得出結(jié)果.【詳解】由圖象可得,函數(shù)的最小正周期為,則,取,則,可得,當時,.故選:B.【點睛】本題考查利用圖象

11、求函數(shù)解析式,同時也考查了利用函數(shù)圖象變換求參數(shù),考查計算能力,屬于中等題.12A【解析】因為,所以函數(shù)是偶函數(shù),排除B、D,又,排除C,故選A二、填空題:本題共4小題,每小題5分,共20分。13【解析】利用等差數(shù)列的通項公式以及等比中項的性質(zhì),化簡求出公差與的關(guān)系,然后轉(zhuǎn)化求解的值.【詳解】設(shè)等差數(shù)列的公差為,則,由于、依次成等比數(shù)列,則,即,解得,因此,.故答案為:.【點睛】本題考查等差數(shù)列通項公式以及等比中項的應用,考查計算能力,屬于基礎(chǔ)題.14-20【解析】根據(jù)二項式定理的通項公式,再分情況考慮即可求解【詳解】解:展開式中項的系數(shù):二項式由通項公式當時,項的系數(shù)是,當時,項的系數(shù)是,故

12、的系數(shù)為;故答案為:【點睛】本題主要考查二項式定理的應用,注意分情況考慮,屬于基礎(chǔ)題15【解析】注意平移是針對自變量x,所以,再利用整體換元法求值域(最值)即可.【詳解】由已知,又,故,所以的最小值為.故答案為:.【點睛】本題考查正弦型函數(shù)在給定區(qū)間上的最值問題,涉及到圖象的平移變換、輔助角公式的應用,是一道基礎(chǔ)題.16【解析】根據(jù)約束條件畫出可行域,即可由直線的平移方法求得的取值范圍.【詳解】.由題意,畫出約束條件表示的平面區(qū)域如下圖所示,令,則如圖所示,圖中直線所示的兩個位置為的臨界位置,根據(jù)幾何關(guān)系可得與軸的兩個交點分別為,所以的取值范圍為.故答案為:【點睛】本題考查了非線性約束條件下線

13、性規(guī)劃的簡單應用,由數(shù)形結(jié)合法求線性目標函數(shù)的取值范圍,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)3;(2);(3)見解析.【解析】(1)依據(jù)下標的關(guān)系,有,兩式相加,即可求出;(2)依據(jù)等比數(shù)列的通項公式知,求出首項和公比即可。利用關(guān)系式,列出方程,可以解出首項和公比;(3)利用等差數(shù)列的定義,即可證出。【詳解】(1)因為對任意,都有,所以,兩式相加,解得;(2)設(shè)等比數(shù)列的首項為,公比為,因為對任意,都有,所以有,解得,又 ,即有,化簡得,即,或,因為,化簡得,所以 故。(3)因為對任意,都有,所以有 ,成等差數(shù)列,設(shè)公差為, ,由等差數(shù)列的定義知

14、,也成等差數(shù)列?!军c睛】本題主要考查等差、等比數(shù)列的定義以及賦值法的應用,意在考查學生的邏輯推理,數(shù)學建模,綜合運用數(shù)列知識的能力。18(1)見解析;(2)【解析】(1)設(shè),由已知,得,代入中即可;(2)利用拋物線的定義將轉(zhuǎn)化為,再利用韋達定理計算.【詳解】(1)在拋物線上,設(shè),由題可知,(2)由(1)問可設(shè):,則, , ,即(*),將直線與拋物線聯(lián)立,可得:,所以,代入(*)式,可得滿足,:.【點睛】本題考查直線與拋物線的位置關(guān)系的應用,在處理直線與拋物線位置關(guān)系的問題時,通常要涉及韋達定理來求解,本題查學生的運算求解能力,是一道中檔題.19(1);(2)【解析】(1)求出,即可求出切線的點

15、斜式方程,整理即可;(2)的取值范圍滿足,求出,當時求出,的解,得到單調(diào)區(qū)間,極小值最小值即可.【詳解】(1)由于,此時切點坐標為所以切線方程為. (2)由已知,故.由于,故,設(shè)由于在單調(diào)遞增同時時,時,故存在使得且當時,當時,所以當時,當時,所以當時,取得極小值,也是最小值,故由于,所以,.【點睛】本題考查導數(shù)的幾何意義、不等式恒成立問題,應用導數(shù)求最值是解題的關(guān)鍵,考查邏輯推理、數(shù)學計算能力,屬于中檔題.20.【解析】根據(jù)特征多項式可得,可得,進而可得矩陣A的逆矩陣.【詳解】因為矩陣的特征多項式,所以,所以.因為,且,所以.【點睛】本題考查矩陣的特征多項式以及逆矩陣的求解,是基礎(chǔ)題.21(1);(2)證明見解析【解析】(1)根據(jù),成等比數(shù)列,有,結(jié)合公差,求得通項,再解不等式.(2)根據(jù)(1),用裂項相消法求和,然后研究其單調(diào)性即可.【詳解】(1)由題意,可知,即,.又,.,故滿足題意的最大自然數(shù)為.(2),. 從而當時,單調(diào)遞增,且,當時,單調(diào)遞增,且,所以,由,知不等式成立.【點睛】本題主要考查等差數(shù)列的基本運算和裂項相消法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論