2022屆四川省宜賓市高三(最后沖刺)數(shù)學(xué)試卷含解析_第1頁
2022屆四川省宜賓市高三(最后沖刺)數(shù)學(xué)試卷含解析_第2頁
2022屆四川省宜賓市高三(最后沖刺)數(shù)學(xué)試卷含解析_第3頁
2022屆四川省宜賓市高三(最后沖刺)數(shù)學(xué)試卷含解析_第4頁
2022屆四川省宜賓市高三(最后沖刺)數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項1考試結(jié)束后,請將本試卷和答題卡一并交回2答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目

2、要求的。1在中,角,的對邊分別為,若,則( )AB3CD42圓錐底面半徑為,高為,是一條母線,點是底面圓周上一點,則點到所在直線的距離的最大值是( )ABCD3定義在上的偶函數(shù),對,且,有成立,已知,則,的大小關(guān)系為( )ABCD4已知定義在上的函數(shù)的周期為4,當(dāng)時,則( )ABCD5已知集合,則( )ABCD6已知函數(shù)(其中為自然對數(shù)的底數(shù))有兩個零點,則實數(shù)的取值范圍是( )ABCD7以下關(guān)于的命題,正確的是A函數(shù)在區(qū)間上單調(diào)遞增B直線需是函數(shù)圖象的一條對稱軸C點是函數(shù)圖象的一個對稱中心D將函數(shù)圖象向左平移需個單位,可得到的圖象8 “”是“函數(shù)的圖象關(guān)于直線對稱”的( )A充分不必要條件B

3、必要不充分條件C充要條件D既不充分也不必要條件9關(guān)于的不等式的解集是,則關(guān)于的不等式的解集是( )ABCD10中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,數(shù)學(xué).某校國學(xué)社團(tuán)開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰,則“六藝”課程講座不同的排課順序共有( )種.A408B120C156D24011已知,則“mn”是“ml”的A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件12已知定

4、義在上的奇函數(shù)滿足,且當(dāng)時,則( )A1B-1C2D-2二、填空題:本題共4小題,每小題5分,共20分。13某校共有師生1600人,其中教師有1000人,現(xiàn)用分層抽樣的方法,從所有師生中抽取一個容量為80的樣本,則抽取學(xué)生的人數(shù)為_14某部隊在訓(xùn)練之余,由同一場地訓(xùn)練的甲乙丙三隊各出三人,組成小方陣開展游戲,則來自同一隊的戰(zhàn)士既不在同一行,也不在同一列的概率為_.15若變量,滿足約束條件則的最大值為_.16角的頂點在坐標(biāo)原點,始邊與x軸的非負(fù)半軸重合,終邊經(jīng)過點P(1,2),則sin()的值是_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù),.(1)若不等

5、式對恒成立,求的最小值;(2)證明:.(3)設(shè)方程的實根為.令若存在,使得,證明:.18(12分)已知動圓經(jīng)過點,且動圓被軸截得的弦長為,記圓心的軌跡為曲線(1)求曲線的標(biāo)準(zhǔn)方程;(2)設(shè)點的橫坐標(biāo)為,為圓與曲線的公共點,若直線的斜率,且,求的值19(12分)已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求直線的直角坐標(biāo)方程;(2)求曲線上的點到直線距離的最小值和最大值.20(12分)如圖,設(shè)A是由個實數(shù)組成的n行n列的數(shù)表,其中aij (i,j=1,2,3,n)表示位于第i行第j列的實數(shù),且a

6、ij1,-1.記S(n,n)為所有這樣的數(shù)表構(gòu)成的集合對于,記ri (A)為A的第i行各數(shù)之積,cj (A)為A的第j列各數(shù)之積令a11a12a1na21a22a2nan1an2ann()請寫出一個AS(4,4),使得l(A)=0;()是否存在AS(9,9),使得l(A)=0?說明理由;()給定正整數(shù)n,對于所有的AS(n,n),求l(A)的取值集合21(12分)已知橢圓的長軸長為,離心率(1)求橢圓的方程;(2)設(shè)分別為橢圓與軸正半軸和軸正半軸的交點,是橢圓上在第一象限的一點,直線與軸交于點,直線與軸交于點,問與面積之差是否為定值?說明理由.22(10分)已知函數(shù),.(1)求的值;(2)令在

7、上最小值為,證明:.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】由正弦定理及條件可得,即.,由余弦定理得。.選B。2C【解析】分析:作出圖形,判斷軸截面的三角形的形狀,然后轉(zhuǎn)化求解的位置,推出結(jié)果即可.詳解:圓錐底面半徑為,高為2,是一條母線,點是底面圓周上一點,在底面的射影為;,過的軸截面如圖:,過作于,則,在底面圓周,選擇,使得,則到的距離的最大值為3,故選:C點睛:本題考查空間點線面距離的求法,考查空間想象能力以及計算能力,解題的關(guān)鍵是作出軸截面圖形,屬中檔題3A【解析】根據(jù)偶函數(shù)的性質(zhì)和單調(diào)性即可判斷.【詳解

8、】解:對,且,有在上遞增因為定義在上的偶函數(shù)所以在上遞減又因為,所以故選:A【點睛】考查偶函數(shù)的性質(zhì)以及單調(diào)性的應(yīng)用,基礎(chǔ)題.4A【解析】因為給出的解析式只適用于,所以利用周期性,將轉(zhuǎn)化為,再與一起代入解析式,利用對數(shù)恒等式和對數(shù)的運算性質(zhì),即可求得結(jié)果.【詳解】定義在上的函數(shù)的周期為4,當(dāng)時,.故選:A.【點睛】本題考查了利用函數(shù)的周期性求函數(shù)值,對數(shù)的運算性質(zhì),屬于中檔題.5C【解析】由題意和交集的運算直接求出.【詳解】 集合,.故選:C.【點睛】本題考查了集合的交集運算.集合進(jìn)行交并補(bǔ)運算時,常借助數(shù)軸求解.注意端點處是實心圓還是空心圓.6B【解析】求出導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,確定函數(shù)

9、的最值,根據(jù)零點存在定理可確定參數(shù)范圍【詳解】,當(dāng)時,單調(diào)遞增,當(dāng)時,單調(diào)遞減,在上只有一個極大值也是最大值,顯然時,時,因此要使函數(shù)有兩個零點,則,故選:B【點睛】本題考查函數(shù)的零點,考查用導(dǎo)數(shù)研究函數(shù)的最值,根據(jù)零點存在定理確定參數(shù)范圍7D【解析】利用輔助角公式化簡函數(shù)得到,再逐項判斷正誤得到答案.【詳解】A選項,函數(shù)先增后減,錯誤B選項,不是函數(shù)對稱軸,錯誤C選項,不是對稱中心,錯誤D選項,圖象向左平移需個單位得到,正確故答案選D【點睛】本題考查了三角函數(shù)的單調(diào)性,對稱軸,對稱中心,平移,意在考查學(xué)生對于三角函數(shù)性質(zhì)的綜合應(yīng)用,其中化簡三角函數(shù)是解題的關(guān)鍵.8A【解析】先求解函數(shù)的圖象關(guān)

10、于直線對稱的等價條件,得到,分析即得解.【詳解】若函數(shù)的圖象關(guān)于直線對稱,則,解得,故“”是“函數(shù)的圖象關(guān)于直線對稱”的充分不必要條件故選:A【點睛】本題考查了充分不必要條件的判斷,考查了學(xué)生邏輯推理,概念理解,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.9A【解析】由的解集,可知及,進(jìn)而可求出方程的解,從而可求出的解集.【詳解】由的解集為,可知且,令,解得,因為,所以的解集為,故選:A.【點睛】本題考查一元一次不等式、一元二次不等式的解集,考查學(xué)生的計算求解能力與推理能力,屬于基礎(chǔ)題.10A【解析】利用間接法求解,首先對6門課程全排列,減去“樂”排在第一節(jié)的情況,再減去“射”和“御”兩門課程相鄰的情況,最后

11、還需加上“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰的情況;【詳解】解:根據(jù)題意,首先不做任何考慮直接全排列則有(種),當(dāng)“樂”排在第一節(jié)有(種),當(dāng)“射”和“御”兩門課程相鄰時有(種),當(dāng)“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰時有(種),則滿足“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰的排法有(種),故選:【點睛】本題考查排列、組合的應(yīng)用,注意“樂”的排列對“射”和“御”兩門課程相鄰的影響,屬于中檔題11B【解析】構(gòu)造長方體ABCDA1B1C1D1,令平面為面ADD1A1,底面ABCD為,然后再在這兩個面中根據(jù)題意恰當(dāng)?shù)倪x取直線為m,n即可進(jìn)行判斷【詳解】如圖,取長方體ABC

12、DA1B1C1D1,令平面為面ADD1A1,底面ABCD為,直線=直線。若令A(yù)D1m,ABn,則mn,但m不垂直于若m,由平面平面可知,直線m垂直于平面,所以m垂直于平面內(nèi)的任意一條直線mn是m的必要不充分條件故選:B【點睛】本題考點有兩個:考查了充分必要條件的判斷,在確定好大前提的條件下,從mnm?和mmn?兩方面進(jìn)行判斷;是空間的垂直關(guān)系,一般利用長方體為載體進(jìn)行分析12B【解析】根據(jù)f(x)是R上的奇函數(shù),并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x0,1時,f(x)=2x-m及f(x)是奇函數(shù),即可得出f(0)=1-m=0,從而求得m=1

13、,這樣便可得出f(2019)=f(-1)=-f(1)=-1【詳解】是定義在R上的奇函數(shù),且;的周期為4;時,;由奇函數(shù)性質(zhì)可得;時,;.故選:B.【點睛】本題考查利用函數(shù)的奇偶性和周期性求值,此類問題一般根據(jù)條件先推導(dǎo)出周期,利用函數(shù)的周期變換來求解,考查理解能力和計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。131【解析】直接根據(jù)分層抽樣的比例關(guān)系得到答案.【詳解】分層抽樣的抽取比例為,抽取學(xué)生的人數(shù)為6001故答案為:1【點睛】本題考查了分層抽樣的計算,屬于簡單題.14【解析】分兩步進(jìn)行:首先,先排第一行,再排第二行,最后排第三行;其次,對每一行選人;最后,利用計算

14、出概率即可.【詳解】首先,第一行隊伍的排法有種;第二行隊伍的排法有2種;第三行隊伍的排法有1種;然后,第一行的每個位置的人員安排有種;第二行的每個位置的人員安排有種;第三行的每個位置的人員安排有種.所以來自同一隊的戰(zhàn)士既不在同一行,也不在同一列的概率.故答案為:.【點睛】本題考查了分步計數(shù)原理,排列與組合知識,考查了轉(zhuǎn)化能力,屬于中檔題.157【解析】畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合,即可容易求得目標(biāo)函數(shù)的最大值.【詳解】作出不等式組所表示的平面區(qū)域,如下圖陰影部分所示.觀察可知,當(dāng)直線過點時,有最大值,.故答案為:.【點睛】本題考查二次不等式組與平面區(qū)域、線性規(guī)劃,主要考查推理論證能力以

15、及數(shù)形結(jié)合思想,屬基礎(chǔ)題.16【解析】計算sin,再利用誘導(dǎo)公式計算得到答案.【詳解】由題意可得x1,y2,r,sin,sin()sin故答案為:【點睛】本題考查了三角函數(shù)定義,誘導(dǎo)公式,意在考查學(xué)生的計算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)(2)證明見解析(3)證明見解析【解析】(1)由題意可得,令,利用導(dǎo)數(shù)得在上單調(diào)遞減,進(jìn)而可得結(jié)論;(2)不等式轉(zhuǎn)化為,令,利用導(dǎo)數(shù)得單調(diào)性即可得到答案;(3)由題意可得,進(jìn)而可將不等式轉(zhuǎn)化為,再利用單調(diào)性可得,記,再利用導(dǎo)數(shù)研究單調(diào)性可得在上單調(diào)遞增,即,即,即可得到結(jié)論.【詳解】(1),即,化簡可得.令,因為,

16、所以,.所以,在上單調(diào)遞減,.所以的最小值為.(2)要證,即.兩邊同除以可得.設(shè),則.在上,所以在上單調(diào)遞減.在上,所以在上單調(diào)遞增,所以.設(shè),因為在上是減函數(shù),所以.所以,即.(3)證明:方程在區(qū)間上的實根為,即,要證,由可知,即要證.當(dāng)時,因而在上單調(diào)遞增.當(dāng)時,因而在上單調(diào)遞減.因為,所以,要證.即要證.記,.因為,所以,則.設(shè),當(dāng)時,.時,故.且,故,因為,所以.因此,即在上單調(diào)遞增.所以,即.故得證.【點睛】本題考查函數(shù)的單調(diào)性、最值、函數(shù)恒成立問題,考查導(dǎo)數(shù)的應(yīng)用,轉(zhuǎn)化思想,構(gòu)造函數(shù)研究單調(diào)性,屬于難題.18見解析【解析】(1)設(shè),則點到軸的距離為,因為圓被軸截得的弦長為,所以,又

17、,所以,化簡可得,所以曲線的標(biāo)準(zhǔn)方程為(2)設(shè),因為直線的斜率,所以可設(shè)直線的方程為,由及,消去可得,所以,所以設(shè)線段的中點為,點的縱坐標(biāo)為,則,所以直線的斜率為,所以,所以,所以易得圓心到直線的距離,由圓經(jīng)過點,可得,所以,整理可得,解得或,所以或,又,所以19(1)(2)最大值;最小值.【解析】(1)結(jié)合極坐標(biāo)和直角坐標(biāo)的互化公式可得;(2)利用參數(shù)方程,求解點到直線的距離公式,結(jié)合三角函數(shù)知識求解最值.【詳解】解:(1)因為,代入,可得直線的直角坐標(biāo)方程為.(2)曲線上的點到直線的距離,其中,.故曲線上的點到直線距離的最大值,曲線上的點到直線的距離的最小值.【點睛】本題主要考查極坐標(biāo)和直

18、角坐標(biāo)的轉(zhuǎn)化及最值問題,橢圓上的點到直線的距離的最值求解優(yōu)先考慮參數(shù)方法,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).20()答案見解析;()不存在,理由見解析;()【解析】()可取第一行都為-1,其余的都取1,即滿足題意;()用反證法證明:假設(shè)存在,得出矛盾,從而證明結(jié)論;()通過分析正確得出l(A)的表達(dá)式,以及從A0如何得到A1,A2,以此類推可得到Ak【詳解】()答案不唯一,如圖所示數(shù)表符合要求.()不存在AS(9,9),使得l(A)=0,證明如下:假如存在,使得.因為,所以,.,.,這18個數(shù)中有9個1,9個-1.令.一方面,由于這18個數(shù)中有9個1,9個-1,從而,另一方面,表示數(shù)表中所有元素之積(記這81個實數(shù)之積為m);也表示m,從而,相矛盾,從而不存在,使得.()記這個實數(shù)之積為p.一方面,從“行”的角度看,有;另一方面,從“列”的角度看,有;從而有,注意到,下面考慮,.,.,中-1的個數(shù),由知,上述2n個實數(shù)中,-1的個數(shù)一定為偶數(shù),該偶數(shù)記為,則1的個數(shù)為2n-2k,所以,對數(shù)表,顯然.將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,依此類推,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,即數(shù)表滿足:,其余,所以,所以,由k的任意性知,l(A)的取值集合為.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論