版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷考生須知:1全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1復(fù)數(shù)的實(shí)部與虛部相等,其中為虛部單位,則實(shí)數(shù)( )A3BCD2二項式展開式中,項的系數(shù)為( )ABCD3為虛數(shù)單位,則的虛部為( )ABCD4執(zhí)行如圖所示的程序框圖,則輸出
2、的( )A2B3CD5要得到函數(shù)的導(dǎo)函數(shù)的圖像,只需將的圖像( )A向右平移個單位長度,再把各點(diǎn)的縱坐標(biāo)伸長到原來的3倍B向右平移個單位長度,再把各點(diǎn)的縱坐標(biāo)縮短到原來的倍C向左平移個單位長度,再把各點(diǎn)的縱坐標(biāo)縮短到原來的倍D向左平移個單位長度,再把各點(diǎn)的縱坐標(biāo)伸長到原來的3倍6設(shè)拋物線的焦點(diǎn)為F,拋物線C與圓交于M,N兩點(diǎn),若,則的面積為( )ABCD7復(fù)數(shù)( )ABCD8設(shè),為兩個平面,則的充要條件是A內(nèi)有無數(shù)條直線與平行B內(nèi)有兩條相交直線與平行C,平行于同一條直線D,垂直于同一平面9已知的值域為,當(dāng)正數(shù)a,b滿足時,則的最小值為( )AB5CD910將函數(shù)的圖象向右平移個周期后,所得圖象
3、關(guān)于軸對稱,則的最小正值是( )ABCD11若集合,則=( )ABCD12ABC的內(nèi)角A,B,C的對邊分別為,已知,則為( )ABC或D或二、填空題:本題共4小題,每小題5分,共20分。13已知函數(shù),則下列結(jié)論中正確的是_.是周期函數(shù);的對稱軸方程為,;在區(qū)間上為增函數(shù);方程在區(qū)間有6個根.14設(shè)復(fù)數(shù)滿足,其中是虛數(shù)單位,若是的共軛復(fù)數(shù),則_15電影厲害了,我的國于2018年3月正式登陸全國院線,網(wǎng)友紛紛表示,看完電影熱血沸騰“我為我的國家驕傲,我為我是中國人驕傲!”厲害了,我的國正在召喚我們每一個人,不忘初心,用奮斗書寫無悔人生,小明想約甲、乙、丙、丁四位好朋友一同去看厲害了,我的國,并把標(biāo)
4、識為的四張電影票放在編號分別為1,2,3,4的四個不同的盒子里,讓四位好朋友進(jìn)行猜測:甲說:第1個盒子里放的是,第3個盒子里放的是乙說:第2個盒子里放的是,第3個盒子里放的是丙說:第4個盒子里放的是,第2個盒子里放的是丁說:第4個盒子里放的是,第3個盒子里放的是小明說:“四位朋友你們都只說對了一半”可以預(yù)測,第4個盒子里放的電影票為_16已知,且,則的最小值是_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)設(shè)數(shù)陣,其中、設(shè),其中,且定義變換為“對于數(shù)陣的每一行,若其中有或,則將這一行中每個數(shù)都乘以;若其中沒有且沒有,則這一行中所有數(shù)均保持不變”(、)表示“將經(jīng)過
5、變換得到,再將經(jīng)過變換得到、 ,以此類推,最后將經(jīng)過變換得到”,記數(shù)陣中四個數(shù)的和為(1)若,寫出經(jīng)過變換后得到的數(shù)陣;(2)若,求的值;(3)對任意確定的一個數(shù)陣,證明:的所有可能取值的和不超過18(12分)如圖,已知在三棱錐中,平面,分別為的中點(diǎn),且.(1)求證:;(2)設(shè)平面與交于點(diǎn),求證:為的中點(diǎn).19(12分)已知(1)若的解集為,求的值;(2)若對任意,不等式恒成立,求實(shí)數(shù)的取值范圍20(12分)已知函數(shù).(1)當(dāng)時,求的單調(diào)區(qū)間;(2)若函數(shù)有兩個極值點(diǎn),且,為的導(dǎo)函數(shù),設(shè),求的取值范圍,并求取到最小值時所對應(yīng)的的值.21(12分)如圖所示,四棱柱中,底面為梯形,.(1)求證:;
6、(2)若平面平面,求二面角的余弦值.22(10分)已知函數(shù),設(shè)的最小值為m.(1)求m的值;(2)是否存在實(shí)數(shù)a,b,使得,?并說明理由.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】利用乘法運(yùn)算化簡復(fù)數(shù)即可得到答案.【詳解】由已知,所以,解得.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的概念及復(fù)數(shù)的乘法運(yùn)算,考查學(xué)生的基本計算能力,是一道容易題.2D【解析】寫出二項式的通項公式,再分析的系數(shù)求解即可.【詳解】二項式展開式的通項為,令,得,故項的系數(shù)為.故選:D【點(diǎn)睛】本題主要考查了二項式定理的運(yùn)算,屬于基礎(chǔ)題.3C【解析】利用復(fù)數(shù)
7、的運(yùn)算法則計算即可.【詳解】,故虛部為.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算以及復(fù)數(shù)的概念,注意復(fù)數(shù)的虛部為,不是,本題為基礎(chǔ)題,也是易錯題.4B【解析】運(yùn)行程序,依次進(jìn)行循環(huán),結(jié)合判斷框,可得輸出值.【詳解】起始階段有,第一次循環(huán)后,第二次循環(huán)后,第三次循環(huán)后,第四次循環(huán)后,所有后面的循環(huán)具有周期性,周期為3,當(dāng)時,再次循環(huán)輸出的,,此時,循環(huán)結(jié)束,輸出,故選:B【點(diǎn)睛】本題主要考查程序框圖的相關(guān)知識,經(jīng)過幾次循環(huán)找出規(guī)律是關(guān)鍵,屬于基礎(chǔ)題型.5D【解析】先求得,再根據(jù)三角函數(shù)圖像變換的知識,選出正確選項.【詳解】依題意,所以由向左平移個單位長度,再把各點(diǎn)的縱坐標(biāo)伸長到原來的3倍得到的圖像.
8、故選:D【點(diǎn)睛】本小題主要考查復(fù)合函數(shù)導(dǎo)數(shù)的計算,考查誘導(dǎo)公式,考查三角函數(shù)圖像變換,屬于基礎(chǔ)題.6B【解析】由圓過原點(diǎn),知中有一點(diǎn)與原點(diǎn)重合,作出圖形,由,得,從而直線傾斜角為,寫出點(diǎn)坐標(biāo),代入拋物線方程求出參數(shù),可得點(diǎn)坐標(biāo),從而得三角形面積【詳解】由題意圓過原點(diǎn),所以原點(diǎn)是圓與拋物線的一個交點(diǎn),不妨設(shè)為,如圖,由于,點(diǎn)坐標(biāo)為,代入拋物線方程得,故選:B.【點(diǎn)睛】本題考查拋物線與圓相交問題,解題關(guān)鍵是發(fā)現(xiàn)原點(diǎn)是其中一個交點(diǎn),從而是等腰直角三角形,于是可得點(diǎn)坐標(biāo),問題可解,如果僅從方程組角度研究兩曲線交點(diǎn),恐怕難度會大大增加,甚至沒法求解7A【解析】試題分析:,故選A.【考點(diǎn)】復(fù)數(shù)運(yùn)算【名師點(diǎn)
9、睛】復(fù)數(shù)代數(shù)形式的四則運(yùn)算的法則是進(jìn)行復(fù)數(shù)運(yùn)算的理論依據(jù),加減運(yùn)算類似于多項式的合并同類項,乘法法則類似于多項式的乘法法則,除法運(yùn)算則先將除式寫成分式的形式,再將分母實(shí)數(shù)化.8B【解析】本題考查了空間兩個平面的判定與性質(zhì)及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質(zhì)定理即可作出判斷【詳解】由面面平行的判定定理知:內(nèi)兩條相交直線都與平行是的充分條件,由面面平行性質(zhì)定理知,若,則內(nèi)任意一條直線都與平行,所以內(nèi)兩條相交直線都與平行是的必要條件,故選B【點(diǎn)睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯誤9A【解析】利用
10、的值域為,求出m,再變形,利用1的代換,即可求出的最小值.【詳解】解:的值域為,當(dāng)且僅當(dāng)時取等號,的最小值為.故選:A.【點(diǎn)睛】本題主要考查了對數(shù)復(fù)合函數(shù)的值域運(yùn)用,同時也考查了基本不等式中“1的運(yùn)用”,屬于中檔題.10D【解析】由函數(shù)的圖象平移變換公式求出變換后的函數(shù)解析式,再利用誘導(dǎo)公式得到關(guān)于的方程,對賦值即可求解.【詳解】由題意知,函數(shù)的最小正周期為,即,由函數(shù)的圖象平移變換公式可得,將函數(shù)的圖象向右平移個周期后的解析式為,因為函數(shù)的圖象關(guān)于軸對稱,所以,即,所以當(dāng)時,有最小正值為.故選:D【點(diǎn)睛】本題考查函數(shù)的圖象平移變換公式和三角函數(shù)誘導(dǎo)公式及正余弦函數(shù)的性質(zhì);熟練掌握誘導(dǎo)公式和正
11、余弦函數(shù)的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、??碱}型.11C【解析】求出集合,然后與集合取交集即可【詳解】由題意,則,故答案為C.【點(diǎn)睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計算能力,屬于基礎(chǔ)題12D【解析】由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點(diǎn)睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】由函數(shù),對選項逐個驗證即得答案.【詳解】函數(shù),是周期函數(shù),最小正周期為,故正確;當(dāng)或時,有最大值或最小值,此時或,即或,即.的對稱軸方程
12、為,故正確;當(dāng)時,此時在上單調(diào)遞減,在上單調(diào)遞增,在區(qū)間上不是增函數(shù),故錯誤;作出函數(shù)的部分圖象,如圖所示方程在區(qū)間有6個根,故正確.故答案為:.【點(diǎn)睛】本題考查三角恒等變換,考查三角函數(shù)的性質(zhì),屬于中檔題.14【解析】由于,則15A或D【解析】分別假設(shè)每一個人一半是對的,然后分別進(jìn)行驗證即可【詳解】解:假設(shè)甲說:第1個盒子里面放的是是對的,則乙說:第3個盒子里面放的是是對的,丙說:第2個盒子里面放的是是對的,丁說:第4個盒子里面放的是是對的,由此可知第4個盒子里面放的是;假設(shè)甲說:第3個盒子里面放的是是對的,則丙說:第4個盒子里面放的是是對的,乙說:第2個盒子里面放的是是對的,丁說:第3個盒
13、子里面放的是是對的,由此可知第4個盒子里面放的是故第4個盒子里面放的電影票為或故答案為:或【點(diǎn)睛】本題考查簡單的合情推理,考查推理論證能力、分析判斷能力、歸納總結(jié)能力,屬于中檔題161【解析】先將前兩項利用基本不等式去掉,再處理只含的算式即可【詳解】解:,因為,所以,所以,當(dāng)且僅當(dāng),時等號成立,故答案為:1【點(diǎn)睛】本題主要考查基本不等式的應(yīng)用,但是由于有3個變量,導(dǎo)致該題不易找到思路,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1);(2);(3)見解析.【解析】(1)由,能求出經(jīng)過變換后得到的數(shù)陣;(2)由,求出數(shù)陣經(jīng)過變化后的矩陣,進(jìn)而可求得的值;(3)分
14、和兩種情況討論,推導(dǎo)出變換后數(shù)陣的第一行和第二行的數(shù)字之和,由此能證明的所有可能取值的和不超過【詳解】(1),經(jīng)過變換后得到的數(shù)陣;(2)經(jīng)變換后得,故;(3)若,在的所有非空子集中,含有且不含的子集共個,經(jīng)過變換后第一行均變?yōu)?、;含有且不含的子集共個,經(jīng)過變換后第一行均變?yōu)?、;同時含有和的子集共個,經(jīng)過變換后第一行仍為、;不含也不含的子集共個,經(jīng)過變換后第一行仍為、所以經(jīng)過變換后所有的第一行的所有數(shù)的和為.若,則的所有非空子集中,含有的子集共個,經(jīng)過變換后第一行均變?yōu)椤?;不含有的子集共個,經(jīng)過變換后第一行仍為、所以經(jīng)過變換后所有的第一行的所有數(shù)的和為同理,經(jīng)過變換后所有的第二行的所有數(shù)的和為
15、所以的所有可能取值的和為,又因為、,所以的所有可能取值的和不超過【點(diǎn)睛】本題考查數(shù)陣變換的求法,考查數(shù)陣中四個數(shù)的和不超過的證明,考查類比推理、數(shù)陣變換等基礎(chǔ)知識,考查運(yùn)算求解能力,綜合性強(qiáng),難度大18(1)證明見解析;(2)證明見解析.【解析】(1)要做證明,只需證明平面即可;(2)易得平面,平面,利用線面平行的性質(zhì)定理即可得到,從而獲得證明【詳解】證明:(1)因為平面,平面,所以.因為,所以.又因為,平面,平面,所以平面.又因為平面,所以. (2)因為平面與交于點(diǎn),所以平面.因為分別為的中點(diǎn),所以.又因為平面,平面,所以平面.又因為平面,平面平面,所以,又因為是的中點(diǎn),所以為的中點(diǎn).【點(diǎn)睛
16、】本題考查線面垂直的判定定理以及線面平行的性質(zhì)定理,考查學(xué)生的邏輯推理能力,是 一道容易題.19(1);(2)【解析】(1)利用兩邊平方法解含有絕對值的不等式,再根據(jù)根與系數(shù)的關(guān)系求出的值;(2)利用絕對值不等式求出的最小值,把不等式化為只含有的不等式,求出不等式解集即可【詳解】(1)不等式,即兩邊平方整理得由題意知和是方程的兩個實(shí)數(shù)根即,解得(2)因為所以要使不等式恒成立,只需當(dāng)時,解得,即;當(dāng)時,解得,即;綜上所述,的取值范圍是【點(diǎn)睛】本題考查了含有絕對值的不等式解法與應(yīng)用問題,也考查了分類討論思想,是中檔題20(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)的取值范圍是;對應(yīng)的的值為.【解析】
17、(1)當(dāng)時,求的導(dǎo)數(shù)可得函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個極值點(diǎn),且,利用導(dǎo)函數(shù),可得的范圍,再表達(dá),構(gòu)造新函數(shù)可求的取值范圍,從而可求取到最小值時所對應(yīng)的的值【詳解】(1)函數(shù)由條件得函數(shù)的定義域:,當(dāng)時,所以:,時,當(dāng)時,當(dāng),時,則函數(shù)的單調(diào)增區(qū)間為:,單調(diào)遞減區(qū)間為:,;(2)由條件得:,由條件得有兩根:,滿足,可得:或;由,可得:,函數(shù)的對稱軸為,所以:,;,可得:,則:,所以:;所以:,令,則,因為:時,所以:在,上是單調(diào)遞減,在,上單調(diào)遞增,因為:,(1),(1),所以,;即的取值范圍是:,;,所以有,則,;所以當(dāng)取到最小值時所對應(yīng)的的值為;【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值和單調(diào)區(qū)間問題,考查利用導(dǎo)數(shù)求函數(shù)的最值,體現(xiàn)了轉(zhuǎn)化的思想方法,屬于難題21(1)證明見解析(2)【解析】(1)取中點(diǎn)為,連接,根據(jù)線段關(guān)系可證明為等邊三角形,即可得;由為等邊三角形,可得,從而由線面垂直判斷定理可證明平面,即可證明.(2)以為原點(diǎn),為,軸建立空間直角坐標(biāo)系,寫出各個點(diǎn)的坐標(biāo),并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.【詳解】(1)證明:取中點(diǎn)為,連接,如下圖所示:因為,所以,故為等邊三角形,則.連接,因為,所以為等邊三角形,則.又,所以平面.因為平面,所以.(2)由(1)知,因為平面平面,平面,所以平面,以為原點(diǎn),為,軸建立如圖
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 善良為話題的議論文6篇
- 八年級第一學(xué)期期末質(zhì)量監(jiān)測語文試題及答案
- 股權(quán)轉(zhuǎn)讓協(xié)議書(公司全部轉(zhuǎn)讓)
- 2025-2030全球購物籃和購物車行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國語音生物識別身份驗證行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球光束通量計行業(yè)調(diào)研及趨勢分析報告
- 二零二五年度跨境電商平臺合作伙伴擔(dān)保合同范本4篇
- 二零二四年度智能家居抹灰施工合同范本3篇
- 二零二四年水電暖設(shè)備安裝與售后服務(wù)協(xié)議3篇
- 二年級數(shù)學(xué)兩位數(shù)加兩位數(shù)計算題單元練習(xí)試題帶答案
- 2025版開發(fā)商與購房者精裝修住宅買賣及售后服務(wù)合同3篇
- 心力衰竭的治療(基層診療與指南2024)
- 10.《運(yùn)動技能學(xué)習(xí)與控制》李強(qiáng)
- 檢察院專業(yè)知識試題及答案
- 冀教版數(shù)學(xué)七年級下冊綜合訓(xùn)練100題含答案
- 1神經(jīng)外科分級護(hù)理制度
- 場館惡劣天氣處置應(yīng)急預(yù)案
- 斜拉橋施工技術(shù)之斜拉索圖文并茂
- GB/T 6144-1985合成切削液
- 第三方在線糾紛解決機(jī)制(ODR)述評,國際商法論文
- 公寓de全人物攻略本為個人愛好而制成如需轉(zhuǎn)載注明信息
評論
0/150
提交評論