版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1某中學(xué)有高中生人,初中生人為了解該校學(xué)生自主鍛煉的時(shí)間,采用分層抽樣的方法從高生和初中生中抽取一個(gè)容量為的樣本.若樣本中高中生恰有人,則的值為( )ABCD2用1,2,3,4,5組成不
2、含重復(fù)數(shù)字的五位數(shù),要求數(shù)字4不出現(xiàn)在首位和末位,數(shù)字1,3,5中有且僅有兩個(gè)數(shù)字相鄰,則滿足條件的不同五位數(shù)的個(gè)數(shù)是( )A48B60C72D1203已知集合,則( )ABCD4天干地支,簡(jiǎn)稱為干支,源自中國遠(yuǎn)古時(shí)代對(duì)天象的觀測(cè).“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”稱為十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”稱為十二地支.干支紀(jì)年法是天干和地支依次按固定的順序相互配合組成,以此往復(fù),60年為一個(gè)輪回.現(xiàn)從農(nóng)歷2000年至2019年共20個(gè)年份中任取2個(gè)年份,則這2個(gè)年份的天干或地支相同的概率為( )ABCD5已知a,b是兩條不同的直線,是兩個(gè)不同的平面,且,則“”是“
3、”的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件6新聞出版業(yè)不斷推進(jìn)供給側(cè)結(jié)構(gòu)性改革,深入推動(dòng)優(yōu)化升級(jí)和融合發(fā)展,持續(xù)提高優(yōu)質(zhì)出口產(chǎn)品供給,實(shí)現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收增長(zhǎng)情況,則下列說法錯(cuò)誤的是( )A2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收均逐年增加B2016年我國數(shù)字出版業(yè)營收超過2012年我國數(shù)字出版業(yè)營收的2倍C2016年我國新聞出版業(yè)營收超過2012年我國新聞出版業(yè)營收的1.5倍D2016年我國數(shù)字出版營收占新聞出版營收的比例未超過三分之一7根據(jù)黨中央關(guān)于“精準(zhǔn)”脫貧的要求,我市某農(nóng)業(yè)經(jīng)濟(jì)部門
4、派四位專家對(duì)三個(gè)縣區(qū)進(jìn)行調(diào)研,每個(gè)縣區(qū)至少派一位專家,則甲,乙兩位專家派遣至同一縣區(qū)的概率為()ABCD8若雙曲線的離心率,則該雙曲線的焦點(diǎn)到其漸近線的距離為( )AB2CD19ABC的內(nèi)角A,B,C的對(duì)邊分別為,已知,則為( )ABC或D或10已知雙曲線的左右焦點(diǎn)分別為,以線段為直徑的圓與雙曲線在第二象限的交點(diǎn)為,若直線與圓相切,則雙曲線的漸近線方程是( )A BC D11已知函數(shù),若,使得,則實(shí)數(shù)的取值范圍是( )ABCD12已知某幾何體的三視圖如右圖所示,則該幾何體的體積為( )A3BCD二、填空題:本題共4小題,每小題5分,共20分。13已知平行于軸的直線與雙曲線:的兩條漸近線分別交于
5、,兩點(diǎn),為坐標(biāo)原點(diǎn),若為等邊三角形,則雙曲線的離心率為_.14如圖,棱長(zhǎng)為2的正方體中,點(diǎn)分別為棱的中點(diǎn),以為圓心,1為半徑,分別在面和面內(nèi)作弧和,并將兩弧各五等分,分點(diǎn)依次為、以及、一只螞蟻欲從點(diǎn)出發(fā),沿正方體的表面爬行至,則其爬行的最短距離為_參考數(shù)據(jù):;)15已知,是平面向量,是單位向量.若,且,則的取值范圍是_.16已知過點(diǎn)的直線與函數(shù)的圖象交于、兩點(diǎn),點(diǎn)在線段上,過作軸的平行線交函數(shù)的圖象于點(diǎn),當(dāng)軸,點(diǎn)的橫坐標(biāo)是 三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)設(shè)數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.18(12分)某機(jī)構(gòu)組織的家庭教
6、育活動(dòng)上有一個(gè)游戲,每次由一個(gè)小孩與其一位家長(zhǎng)參與,測(cè)試家長(zhǎng)對(duì)小孩飲食習(xí)慣的了解程度在每一輪游戲中,主持人給出A,B,C,D四種食物,要求小孩根據(jù)自己的喜愛程度對(duì)其排序,然后由家長(zhǎng)猜測(cè)小孩的排序結(jié)果設(shè)小孩對(duì)四種食物排除的序號(hào)依次為xAxBxCxD,家長(zhǎng)猜測(cè)的序號(hào)依次為yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四個(gè)數(shù)字的一種排列定義隨機(jī)變量X(xAyA)2+(xByB)2+(xCyC)2+(xDyD)2,用X來衡量家長(zhǎng)對(duì)小孩飲食習(xí)慣的了解程度(1)若參與游戲的家長(zhǎng)對(duì)小孩的飲食習(xí)慣完全不了解()求他們?cè)谝惠営螒蛑?,?duì)四種食物排出的序號(hào)完全不同的概率;()求X的分布列
7、(簡(jiǎn)要說明方法,不用寫出詳細(xì)計(jì)算過程);(2)若有一組小孩和家長(zhǎng)進(jìn)行來三輪游戲,三輪的結(jié)果都滿足X4,請(qǐng)判斷這位家長(zhǎng)對(duì)小孩飲食習(xí)慣是否了解,說明理由19(12分)如圖所示,在三棱錐中,點(diǎn)為中點(diǎn)(1)求證:平面平面;(2)若點(diǎn)為中點(diǎn),求平面與平面所成銳二面角的余弦值20(12分)設(shè)函數(shù)(1)當(dāng)時(shí),求不等式的解集;(2)若存在,使得不等式對(duì)一切恒成立,求實(shí)數(shù)的取值范圍21(12分)已知矩陣,若矩陣,求矩陣的逆矩陣22(10分)設(shè),(1)求的單調(diào)區(qū)間;(2)設(shè)恒成立,求實(shí)數(shù)的取值范圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1B【
8、解析】利用某一層樣本數(shù)等于某一層的總體個(gè)數(shù)乘以抽樣比計(jì)算即可.【詳解】由題意,解得.故選:B.【點(diǎn)睛】本題考查簡(jiǎn)單隨機(jī)抽樣中的分層抽樣,某一層樣本數(shù)等于某一層的總體個(gè)數(shù)乘以抽樣比,本題是一道基礎(chǔ)題.2A【解析】對(duì)數(shù)字分類討論,結(jié)合數(shù)字中有且僅有兩個(gè)數(shù)字相鄰,利用分類計(jì)數(shù)原理,即可得到結(jié)論【詳解】數(shù)字出現(xiàn)在第位時(shí),數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個(gè)數(shù)字出現(xiàn)在第位時(shí),同理也有個(gè)數(shù)字出現(xiàn)在第位時(shí),數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個(gè)故滿足條件的不同的五位數(shù)的個(gè)數(shù)是個(gè)故選【點(diǎn)睛】本題主要考查了排列,組合及簡(jiǎn)單計(jì)數(shù)問題,解題的關(guān)鍵是對(duì)數(shù)字分類討論,屬于基礎(chǔ)題。3C【解析】求出集合,計(jì)算出和,即
9、可得出結(jié)論.【詳解】,.故選:C.【點(diǎn)睛】本題考查交集和并集的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.4B【解析】利用古典概型概率計(jì)算方法分析出符合題意的基本事件個(gè)數(shù),結(jié)合組合數(shù)的計(jì)算即可出求得概率.【詳解】20個(gè)年份中天干相同的有10組(每組2個(gè)),地支相同的年份有8組(每組2個(gè)),從這20個(gè)年份中任取2個(gè)年份,則這2個(gè)年份的天干或地支相同的概率.故選:B.【點(diǎn)睛】本小題主要考查古典概型的計(jì)算,考查組合數(shù)的計(jì)算,考查學(xué)生分析問題的能力,難度較易.5C【解析】根據(jù)線面平行的性質(zhì)定理和判定定理判斷與的關(guān)系即可得到答案.【詳解】若,根據(jù)線面平行的性質(zhì)定理,可得;若,根據(jù)線面平行的判定定理,可得.故選:C.
10、【點(diǎn)睛】本題主要考查了線面平行的性質(zhì)定理和判定定理,屬于基礎(chǔ)題.6C【解析】通過圖表所給數(shù)據(jù),逐個(gè)選項(xiàng)驗(yàn)證.【詳解】根據(jù)圖示數(shù)據(jù)可知選項(xiàng)A正確;對(duì)于選項(xiàng)B:,正確;對(duì)于選項(xiàng)C:,故C不正確;對(duì)于選項(xiàng)D:,正確.選C.【點(diǎn)睛】本題主要考查柱狀圖是識(shí)別和數(shù)據(jù)分析,題目較為簡(jiǎn)單.7A【解析】每個(gè)縣區(qū)至少派一位專家,基本事件總數(shù),甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個(gè)數(shù),由此能求出甲,乙兩位專家派遣至同一縣區(qū)的概率.【詳解】派四位專家對(duì)三個(gè)縣區(qū)進(jìn)行調(diào)研,每個(gè)縣區(qū)至少派一位專家基本事件總數(shù):甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個(gè)數(shù):甲,乙兩位專家派遣至同一縣區(qū)的概率為:本題正確選項(xiàng):【點(diǎn)睛】
11、本題考查概率的求法,考查古典概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.8C【解析】根據(jù)雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點(diǎn)到直線距離公式即可求解.【詳解】雙曲線的離心率,則,解得,所以焦點(diǎn)坐標(biāo)為,所以,則雙曲線漸近線方程為,即,不妨取右焦點(diǎn),則由點(diǎn)到直線距離公式可得,故選:C.【點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì)及簡(jiǎn)單應(yīng)用,漸近線方程的求法,點(diǎn)到直線距離公式的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.9D【解析】由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點(diǎn)睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.10
12、B【解析】先設(shè)直線與圓相切于點(diǎn),根據(jù)題意,得到,再由,根據(jù)勾股定理求出,從而可得漸近線方程.【詳解】設(shè)直線與圓相切于點(diǎn),因?yàn)槭且詧A的直徑為斜邊的圓內(nèi)接三角形,所以,又因?yàn)閳A與直線的切點(diǎn)為,所以,又,所以,因此,因此有,所以,因此漸近線的方程為.故選B【點(diǎn)睛】本題主要考查雙曲線的漸近線方程,熟記雙曲線的簡(jiǎn)單性質(zhì)即可,屬于??碱}型.11C【解析】試題分析:由題意知,當(dāng)時(shí),由,當(dāng)且僅當(dāng)時(shí),即等號(hào)是成立,所以函數(shù)的最小值為,當(dāng)時(shí),為單調(diào)遞增函數(shù),所以,又因?yàn)?,使得,即在的最小值不小于在上的最小值,即,解得,故選C考點(diǎn):函數(shù)的綜合問題【方法點(diǎn)晴】本題主要考查了函數(shù)的綜合問題,其中解答中涉及到基本不等式求
13、最值、函數(shù)的單調(diào)性及其應(yīng)用、全稱命題與存在命題的應(yīng)用等知識(shí)點(diǎn)的綜合考查,試題思維量大,屬于中檔試題,著重考查了學(xué)生分析問題和解答問題的能力,以及轉(zhuǎn)化與化歸思想的應(yīng)用,其中解答中轉(zhuǎn)化為在的最小值不小于在上的最小值是解答的關(guān)鍵12B【解析】由三視圖知:幾何體是直三棱柱消去一個(gè)三棱錐,如圖:直三棱柱的體積為,消去的三棱錐的體積為,幾何體的體積,故選B. 點(diǎn)睛:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及相關(guān)幾何量的數(shù)據(jù)是解答此類問題的關(guān)鍵;幾何體是直三棱柱消去一個(gè)三棱錐,結(jié)合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.二、填空題:本題共4小題,每小題5分
14、,共20分。132【解析】根據(jù)為等邊三角形建立的關(guān)系式,從而可求離心率.【詳解】據(jù)題設(shè)分析知,所以,得,所以雙曲線的離心率.【點(diǎn)睛】本題主要考查雙曲線的離心率的求解,根據(jù)條件建立之間的關(guān)系式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).14【解析】根據(jù)空間位置關(guān)系,將平面旋轉(zhuǎn)后使得各點(diǎn)在同一平面內(nèi),結(jié)合角的關(guān)系即可求得兩點(diǎn)間距離的三角函數(shù)表達(dá)式.根據(jù)所給參考數(shù)據(jù)即可得解.【詳解】棱長(zhǎng)為2的正方體中,點(diǎn)分別為棱的中點(diǎn),以為圓心,1為半徑,分別在面和面內(nèi)作弧和.將平面繞旋轉(zhuǎn)至與平面共面的位置,如下圖所示:則,所以;將平面繞旋轉(zhuǎn)至與平面共面的位置,將繞旋轉(zhuǎn)至與平面共面的位置,如下圖所示:則,所以;因?yàn)椋?/p>
15、且由誘導(dǎo)公式可得,所以最短距離為,故答案為:.【點(diǎn)睛】本題考查了空間幾何體中最短距離的求法,注意將空間幾何體展開至同一平面內(nèi)求解的方法,三角函數(shù)誘導(dǎo)公式的應(yīng)用,綜合性強(qiáng),屬于難題.15【解析】先由題意設(shè)向量的坐標(biāo),再結(jié)合平面向量數(shù)量積的運(yùn)算及不等式可得解【詳解】由是單位向量若,設(shè),則,又,則,則,則,又,所以,(當(dāng)或時(shí)取等)即的取值范圍是,故答案為:,【點(diǎn)睛】本題考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平16【解析】通過設(shè)出A點(diǎn)坐標(biāo),可得C點(diǎn)坐標(biāo),通過軸,可得B點(diǎn)坐標(biāo),于是再利用可得答案.【詳解】根據(jù)題意,可設(shè)點(diǎn),則,由于軸,故,代入,可得,即,由于在線段上,故,即,
16、解得.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1);(2).【解析】(1)令可求得的值,令時(shí),由可得出,兩式相減可得的表達(dá)式,然后對(duì)是否滿足在時(shí)的表達(dá)式進(jìn)行檢驗(yàn),由此可得出數(shù)列的通項(xiàng)公式;(2)求出數(shù)列的通項(xiàng)公式,對(duì)分奇數(shù)和偶數(shù)兩種情況討論,利用奇偶分組求和法結(jié)合等差數(shù)列和等比數(shù)列的求和公式可求得結(jié)果.【詳解】(1),當(dāng)時(shí),;當(dāng)時(shí),由得,兩式相減得,.滿足.因此,數(shù)列的通項(xiàng)公式為;(2).當(dāng)為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí),.綜上所述,.【點(diǎn)睛】本題考查數(shù)列通項(xiàng)的求解,同時(shí)也考查了奇偶分組求和法,考查計(jì)算能力,屬于中等題.18(1)()()分布表見解析;(2)理由見解析【解析
17、】(1)(i)若家長(zhǎng)對(duì)小孩子的飲食習(xí)慣完全不了解,則家長(zhǎng)對(duì)小孩的排序是隨意猜測(cè)的,家長(zhǎng)的排序有種等可能結(jié)果,利用列舉法求出其中滿足“家長(zhǎng)的排序與對(duì)應(yīng)位置的數(shù)字完全不同”的情況有9種,由此能求出他們?cè)谝惠営螒蛑校瑢?duì)四種食物排出的序號(hào)完全不同的概率(ii)根據(jù)(i)的分析,同樣只考慮小孩排序?yàn)?234的情況,家長(zhǎng)的排序一共有24種情況,由此能求出X的分布列(2)假設(shè)家長(zhǎng)對(duì)小孩的飲食習(xí)慣完全不了解,在一輪游戲中,P(X4)=P(X=0)+ P(X=2)=,三輪游戲結(jié)果都滿足“X4”的概率為,這個(gè)結(jié)果發(fā)生的可能性很小,從而這位家長(zhǎng)對(duì)小孩飲食習(xí)慣比較了解【詳解】(1)(i)若家長(zhǎng)對(duì)小孩子的飲食習(xí)慣完全不
18、了解,則家長(zhǎng)對(duì)小孩的排序是隨意猜測(cè)的,先考慮小孩的排序?yàn)閤A,xB,xC,xD為1234的情況,家長(zhǎng)的排序有24種等可能結(jié)果,其中滿足“家長(zhǎng)的排序與對(duì)應(yīng)位置的數(shù)字完全不同”的情況有9種,分別為:2143,2341,2413,3142,3412,3421,4123,4312,4321,家長(zhǎng)的排序與對(duì)應(yīng)位置的數(shù)字完全不同的概率P基小孩對(duì)四種食物的排序是其他情況,只需將角標(biāo)A,B,C,D按照小孩的順序調(diào)整即可,假設(shè)小孩的排序xA,xB,xC,xD為1423的情況,四種食物按1234的排列為ACDB,再研究yAyByCyD的情況即可,其實(shí)這樣處理后與第一種情況的計(jì)算結(jié)果是一致的,他們?cè)谝惠営螒蛑?,?duì)四
19、種食物排出的序號(hào)完全不同的概率為(ii)根據(jù)(i)的分析,同樣只考慮小孩排序?yàn)?234的情況,家長(zhǎng)的排序一共有24種情況,列出所有情況,分別計(jì)算每種情況下的x的值,X的分布列如下表: X 02 4 6 8 10 12 14 16 18 20 P (2)這位家長(zhǎng)對(duì)小孩的飲食習(xí)慣比較了解理由如下:假設(shè)家長(zhǎng)對(duì)小孩的飲食習(xí)慣完全不了解,由(1)可知,在一輪游戲中,P(X4)P(X0)+P(X2),三輪游戲結(jié)果都滿足“X4”的概率為()3,這個(gè)結(jié)果發(fā)生的可能性很小,這位家長(zhǎng)對(duì)小孩飲食習(xí)慣比較了解【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合、列舉法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題19(1)答案見解析(2)【解析】(1)通過證明平面,證得,證得,由此證得平面,進(jìn)而證得平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出平面與平面所成銳二面角的余弦值.【詳解】(1)因?yàn)?,所以平面,因?yàn)槠矫?,所以因?yàn)椋c(diǎn)為中點(diǎn),所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024張家港食品加工廠產(chǎn)品銷售合同
- 大班畢業(yè)創(chuàng)意活動(dòng)策劃方案五篇
- 2021大班元宵節(jié)活動(dòng)方案模板
- 二零二五年度304不銹鋼管材批量采購合作協(xié)議3篇
- 嘔血中醫(yī)護(hù)理查房
- 二零二五年度國際物流服務(wù)銷售代理聘用協(xié)議2篇
- 2024年高??蒲泻献鲄f(xié)議
- 【名師一號(hào)】2021高考化學(xué)(蘇教版)一輪復(fù)習(xí)課時(shí)訓(xùn)練:7-1化學(xué)反應(yīng)速率
- 高中信息技術(shù)浙教版:1-3 開源硬件的經(jīng)典案例-說課稿
- (山西卷)2022年中考物理第二次模擬考試(全解全析)
- 護(hù)理不良事件用藥錯(cuò)誤講課
- 新教材人教版高中英語選擇性必修第一冊(cè)全冊(cè)教學(xué)設(shè)計(jì)
- 2024北京大興區(qū)初三(上)期末化學(xué)試卷及答案
- 媒體與新聞法律法規(guī)法律意識(shí)與職業(yè)素養(yǎng)
- 推土機(jī)-推土機(jī)構(gòu)造與原理
- 九年級(jí)化學(xué)課程綱要
- 臥式單面多軸鉆孔組合機(jī)床動(dòng)力滑臺(tái)液壓系統(tǒng)
- Pcr室危險(xiǎn)評(píng)估報(bào)告
- 生姜高產(chǎn)種植技術(shù)課件
- 人教版六年級(jí)口算題大全(打印版)
評(píng)論
0/150
提交評(píng)論