![2022年黑龍江省哈爾濱市呼蘭區(qū)高三第二次模擬考試數(shù)學(xué)試卷含解析_第1頁](http://file4.renrendoc.com/view/4b013188bdb32fed9a8a0eb4c50372e1/4b013188bdb32fed9a8a0eb4c50372e11.gif)
![2022年黑龍江省哈爾濱市呼蘭區(qū)高三第二次模擬考試數(shù)學(xué)試卷含解析_第2頁](http://file4.renrendoc.com/view/4b013188bdb32fed9a8a0eb4c50372e1/4b013188bdb32fed9a8a0eb4c50372e12.gif)
![2022年黑龍江省哈爾濱市呼蘭區(qū)高三第二次模擬考試數(shù)學(xué)試卷含解析_第3頁](http://file4.renrendoc.com/view/4b013188bdb32fed9a8a0eb4c50372e1/4b013188bdb32fed9a8a0eb4c50372e13.gif)
![2022年黑龍江省哈爾濱市呼蘭區(qū)高三第二次模擬考試數(shù)學(xué)試卷含解析_第4頁](http://file4.renrendoc.com/view/4b013188bdb32fed9a8a0eb4c50372e1/4b013188bdb32fed9a8a0eb4c50372e14.gif)
![2022年黑龍江省哈爾濱市呼蘭區(qū)高三第二次模擬考試數(shù)學(xué)試卷含解析_第5頁](http://file4.renrendoc.com/view/4b013188bdb32fed9a8a0eb4c50372e1/4b013188bdb32fed9a8a0eb4c50372e15.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2答題時(shí)請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1若復(fù)數(shù)滿足(是虛數(shù)單位),則( )ABCD2執(zhí)行如圖所示的程序框圖后,輸出的值為5,則的取值范圍是( ). ABC
2、D3已知集合,則( )ABCD42019年10月1日,中華人民共和國成立70周年,舉國同慶.將2,0,1,9,10這5個數(shù)字按照任意次序排成一行,拼成一個6位數(shù),則產(chǎn)生的不同的6位數(shù)的個數(shù)為A96B84C120D3605已知函數(shù)且的圖象恒過定點(diǎn),則函數(shù)圖象以點(diǎn)為對稱中心的充要條件是( )ABCD6已知函數(shù),.若存在,使得成立,則的最大值為( )ABCD7已知平面向量,滿足,且,則與的夾角為( )ABCD8已知雙曲線的右焦點(diǎn)為,過的直線交雙曲線的漸近線于兩點(diǎn),且直線的傾斜角是漸近線傾斜角的2倍,若,則該雙曲線的離心率為( )ABCD9某四棱錐的三視圖如圖所示,則該四棱錐的體積為( )ABCD10
3、將函數(shù)的圖象向左平移個單位長度,得到的函數(shù)為偶函數(shù),則的值為()ABCD11如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積( )ABCD12如圖是一個幾何體的三視圖,則該幾何體的體積為()ABCD二、填空題:本題共4小題,每小題5分,共20分。13如圖,在平面四邊形中,點(diǎn),是橢圓短軸的兩個端點(diǎn),點(diǎn)在橢圓上,記和的面積分別為,則_.14在中,、的坐標(biāo)分別為,且滿足,為坐標(biāo)原點(diǎn),若點(diǎn)的坐標(biāo)為,則的取值范圍為_.15曲線ye5x2在點(diǎn)(0,3)處的切線方程為_16已知雙曲線C:()的左、右焦點(diǎn)為,為雙曲線C上一點(diǎn),且,若線段與雙曲線C交于另一點(diǎn)A,則的面積為_.三
4、、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù)()(1)函數(shù)在點(diǎn)處的切線方程為,求函數(shù)的極值;(2)當(dāng)時(shí),對于任意,當(dāng)時(shí),不等式恒成立,求出實(shí)數(shù)的取值范圍.18(12分)已知函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)已知在處的切線與軸垂直,若方程有三個實(shí)數(shù)解、(),求證:.19(12分)已知拋物線和圓,傾斜角為45的直線過拋物線的焦點(diǎn),且與圓相切(1)求的值;(2)動點(diǎn)在拋物線的準(zhǔn)線上,動點(diǎn)在上,若在點(diǎn)處的切線交軸于點(diǎn),設(shè)求證點(diǎn)在定直線上,并求該定直線的方程20(12分)如圖,四棱錐的底面中,為等邊三角形,是等腰三角形,且頂角,平面平面,為中點(diǎn).(1)求證:平面
5、;(2)若,求二面角的余弦值大小.21(12分)已知點(diǎn),且,滿足條件的點(diǎn)的軌跡為曲線(1)求曲線的方程;(2)是否存在過點(diǎn)的直線,直線與曲線相交于兩點(diǎn),直線與軸分別交于兩點(diǎn),使得?若存在,求出直線的方程;若不存在,請說明理由22(10分)如圖,四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形,在上,且面. (1)求證: 是的中點(diǎn);(2)在上是否存在點(diǎn),使二面角為直角?若存在,求出的值;若不存在,說明理由.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1B【解析】利用復(fù)數(shù)乘法運(yùn)算化簡,由此求得.【詳解】依題意,所以.故選:B【點(diǎn)
6、睛】本小題主要考查復(fù)數(shù)的乘法運(yùn)算,考查復(fù)數(shù)模的計(jì)算,屬于基礎(chǔ)題.2C【解析】框圖的功能是求等比數(shù)列的和,直到和不滿足給定的值時(shí),退出循環(huán),輸出n.【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;第四次循環(huán):;此時(shí)滿足輸出結(jié)果,故.故選:C.【點(diǎn)睛】本題考查程序框圖的應(yīng)用,建議數(shù)據(jù)比較小時(shí),可以一步一步的書寫,防止錯誤,是一道容易題.3A【解析】求得集合中函數(shù)的值域,由此求得,進(jìn)而求得.【詳解】由,得,所以,所以.故選:A【點(diǎn)睛】本小題主要考查函數(shù)值域的求法,考查集合補(bǔ)集、交集的概念和運(yùn)算,屬于基礎(chǔ)題.4B【解析】2,0,1,9,10按照任意次序排成一行,得所有不以0開頭的排列數(shù)共個,其中含有
7、2個10的排列數(shù)共個,所以產(chǎn)生的不同的6位數(shù)的個數(shù)為.故選B5A【解析】由題可得出的坐標(biāo)為,再利用點(diǎn)對稱的性質(zhì),即可求出和.【詳解】根據(jù)題意,所以點(diǎn)的坐標(biāo)為,又 ,所以.故選:A.【點(diǎn)睛】本題考查指數(shù)函數(shù)過定點(diǎn)問題和函數(shù)對稱性的應(yīng)用,屬于基礎(chǔ)題.6C【解析】由題意可知,由可得出,利用導(dǎo)數(shù)可得出函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,進(jìn)而可得出,由此可得出,可得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)在上的最大值即可得解.【詳解】,由于,則,同理可知,函數(shù)的定義域?yàn)椋瑢愠闪?,所以,函?shù)在區(qū)間上單調(diào)遞增,同理可知,函數(shù)在區(qū)間上單調(diào)遞增,則,則,構(gòu)造函數(shù),其中,則.當(dāng)時(shí),此時(shí)函數(shù)單調(diào)遞增;當(dāng)時(shí),此時(shí)函數(shù)
8、單調(diào)遞減.所以,.故選:C.【點(diǎn)睛】本題考查代數(shù)式最值的計(jì)算,涉及指對同構(gòu)思想的應(yīng)用,考查化歸與轉(zhuǎn)化思想的應(yīng)用,有一定的難度.7C【解析】根據(jù), 兩邊平方,化簡得,再利用數(shù)量積定義得到求解.【詳解】因?yàn)槠矫嫦蛄浚瑵M足,且, 所以,所以,所以 ,所以,所以與的夾角為.故選:C【點(diǎn)睛】本題主要考查平面向量的模,向量的夾角和數(shù)量積運(yùn)算,屬于基礎(chǔ)題.8B【解析】先求出直線l的方程為y(xc),與yx聯(lián)立,可得A,B的縱坐標(biāo),利用,求出a,b的關(guān)系,即可求出該雙曲線的離心率【詳解】雙曲線1(ab0)的漸近線方程為yx,直線l的傾斜角是漸近線OA傾斜角的2倍,kl,直線l的方程為y(xc),與yx聯(lián)立,可
9、得y或y,2,ab,c2b,e故選B【點(diǎn)睛】本題考查雙曲線的簡單性質(zhì),考查向量知識,考查學(xué)生的計(jì)算能力,屬于中檔題9B【解析】由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,由此求出四棱錐的體積【詳解】由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,畫出四棱錐的直觀圖,如圖所示:則該四棱錐的體積為.故選:B.【點(diǎn)睛】本題考查了利用三視圖求幾何體體積的問題,是基礎(chǔ)題10D【解析】利用三角函數(shù)的圖象變換求得函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì),即可求解,得到答案【詳解】將將函數(shù)的圖象向左平移個單位長度,可得函數(shù)又由函數(shù)為偶函數(shù),所以,解得,因?yàn)?,?dāng)時(shí),故選D【點(diǎn)睛】本題主要考查了三角函數(shù)
10、的圖象變換,以及三角函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟記三角函數(shù)的圖象變換,合理應(yīng)用三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題11C【解析】畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可【詳解】解:幾何體的直觀圖如圖,是正方體的一部分,PABC,正方體的棱長為2,該幾何體的表面積:故選C【點(diǎn)睛】本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關(guān)鍵12A【解析】根據(jù)三視圖可得幾何體為直三棱柱,根據(jù)三視圖中的數(shù)據(jù)直接利用公式可求體積.【詳解】由三視圖可知幾何體為直三棱柱,直觀圖如圖所示:其中,底面為直角三角形,高為.該幾何體的體積為故選:A.【
11、點(diǎn)睛】本題考查三視圖及棱柱的體積,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】依題意易得A、B、C、D四點(diǎn)共圓且圓心在x軸上,然后設(shè)出圓心,由圓的方程與橢圓方程聯(lián)立得到B的橫坐標(biāo),進(jìn)一步得到D橫坐標(biāo),再由計(jì)算比值即可.【詳解】因?yàn)?,所以A、B、C、D四點(diǎn)共圓,直徑為,又A、C關(guān)于x軸對稱,所以圓心E在x軸上,設(shè)圓心E為,則圓的方程為,聯(lián)立橢圓方程消y得,解得,故B的橫坐標(biāo)為,又B、D中點(diǎn)是E,所以D的橫坐標(biāo)為,故.故答案為:.【點(diǎn)睛】本題考查橢圓中的四點(diǎn)共圓及三角形面積之比的問題,考查學(xué)生基本計(jì)算能力及轉(zhuǎn)化與化歸思想,本題關(guān)鍵是求出B、D橫坐標(biāo),是一道有區(qū)分度的壓軸
12、填空題.14【解析】由正弦定理可得點(diǎn)在曲線上,設(shè),則,將代入可得,利用二次函數(shù)的性質(zhì)可得范圍.【詳解】解:由正弦定理得,則點(diǎn)在曲線上,設(shè),則,又,因?yàn)?,則,即的取值范圍為.故答案為:.【點(diǎn)睛】本題考查雙曲線的定義,考查向量數(shù)量積的坐標(biāo)運(yùn)算,考查學(xué)生計(jì)算能力,有一定的綜合性,但難度不大.15.【解析】先利用導(dǎo)數(shù)求切線的斜率,再寫出切線方程.【詳解】因?yàn)閥5e5x,所以切線的斜率k5e05,所以切線方程是:y35(x0),即y5x3.故答案為y5x3.【點(diǎn)睛】(1)本題主要考查導(dǎo)數(shù)的幾何意義和函數(shù)的求導(dǎo),意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2) 函數(shù)在點(diǎn)處的導(dǎo)數(shù)是曲線在處的切線的斜率
13、,相應(yīng)的切線方程是16【解析】由已知得即,,可解得,由在雙曲線C上,代入即可求得雙曲線方程,然后求得直線的方程與雙曲線方程聯(lián)立求得點(diǎn)A坐標(biāo),借助,即可解得所求.【詳解】由已知得,又,所以,解得或,由在雙曲線C上,所以或,所以或(舍去),因此雙曲線C的方程為.又,所以線段的方程為,與雙曲線C的方程聯(lián)立消去x整理得,所以,所以點(diǎn)A坐標(biāo)為,所以.【點(diǎn)睛】本題主要考查直線與雙曲線的位置關(guān)系,考查雙曲線方程的求解,考查求三角形面積,考查學(xué)生的計(jì)算能力,難度較難.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)極小值為,極大值為.(2)【解析】(1)根據(jù)斜線的斜率即可求得參數(shù),再對
14、函數(shù)求導(dǎo),即可求得函數(shù)的極值;(2)根據(jù)題意,對目標(biāo)式進(jìn)行變形,構(gòu)造函數(shù),根據(jù)是單調(diào)減函數(shù),分離參數(shù),求函數(shù)的最值即可求得結(jié)果.【詳解】(1)函數(shù)的定義域?yàn)?,可知,解得,可知在,時(shí),函數(shù)單調(diào)遞增,在時(shí),函數(shù)單調(diào)遞減,可知函數(shù)的極小值為,極大值為.(2)可以變形為,可得,可知函數(shù)在上單調(diào)遞減,可得,設(shè),可知函數(shù)在單調(diào)遞減,可知,可知參數(shù)的取值范圍為.【點(diǎn)睛】本題考查由切線的斜率求參數(shù)的值,以及對具體函數(shù)極值的求解,涉及構(gòu)造函數(shù)法,以及利用導(dǎo)數(shù)求函數(shù)的值域;第二問的難點(diǎn)在于對目標(biāo)式的變形,屬綜合性中檔題.18(1)當(dāng)時(shí), 在單調(diào)遞增,當(dāng)時(shí),單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)證明見解析【解析】(1
15、)先求解導(dǎo)函數(shù),然后對參數(shù)分類討論,分析出每種情況下函數(shù)的單調(diào)性即可;(2)根據(jù)條件先求解出的值,然后構(gòu)造函數(shù)分析出之間的關(guān)系,再構(gòu)造函數(shù)分析出之間的關(guān)系,由此證明出.【詳解】(1),當(dāng)時(shí),恒成立,則在單調(diào)遞增當(dāng)時(shí),令得,解得,又,當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.(2)依題意得,則由(1)得,在單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增若方程有三個實(shí)數(shù)解,則法一:雙偏移法設(shè),則在上單調(diào)遞增,即,其中,在上單調(diào)遞減,即設(shè),在上單調(diào)遞增,即,其中,在上單調(diào)遞增,即.法二:直接證明法,在上單調(diào)遞增,要證,即證設(shè),則在上單調(diào)遞減,在上單調(diào)遞增,即(注意:若沒有證明,扣3分)關(guān)于的證明:(1)
16、且時(shí),(需要證明),其中(2),即,則【點(diǎn)睛】本題考查函數(shù)與倒導(dǎo)數(shù)的綜合應(yīng)用,難度較難.(1)對于含參函數(shù)單調(diào)性的分析,可通過分析參數(shù)的臨界值,由此分類討論函數(shù)單調(diào)性;(2)利用導(dǎo)數(shù)證明不等式常用方法:構(gòu)造函數(shù),利用新函數(shù)的單調(diào)性確定函數(shù)的最值,從而達(dá)到證明不等式的目的.19(1);(2)點(diǎn)在定直線上【解析】(1)設(shè)出直線的方程為,由直線和圓相切的條件:,解得;(2)設(shè)出,運(yùn)用導(dǎo)數(shù)求得切線的斜率,求得為切點(diǎn)的切線方程,再由向量的坐標(biāo)表示,可得在定直線上;【詳解】解:(1)依題意設(shè)直線的方程為,由已知得:圓的圓心,半徑,因?yàn)橹本€與圓相切,所以圓心到直線的距離,即,解得或(舍去)所以;(2)依題意
17、設(shè),由(1)知拋物線方程為,所以,所以,設(shè),則以為切點(diǎn)的切線的斜率為,所以切線的方程為令,即交軸于點(diǎn)坐標(biāo)為,所以, ,設(shè)點(diǎn)坐標(biāo)為,則,所以點(diǎn)在定直線上【點(diǎn)睛】本題考查拋物線的方程和性質(zhì),直線與圓的位置關(guān)系的判斷,考查直線方程和圓方程的運(yùn)用,以及切線方程的求法,考查化簡整理的運(yùn)算能力,屬于綜合題20(1)見解析;(2)【解析】(1)設(shè)中點(diǎn)為,連接、,首先通過條件得出,加,可得,進(jìn)而可得平面,再加上平面,可得平面平面,則平面;(2)設(shè)中點(diǎn)為,連接、,可得平面,加上平面,則可如圖建立直角坐標(biāo)系,求出平面的法向量和平面的法向量,利用向量法可得二面角的余弦值.【詳解】(1)證明:設(shè)中點(diǎn)為,連接、,為等邊
18、三角形,即, ,平面,平面,平面,為的中位線,平面,平面,平面,、為平面內(nèi)二相交直線,平面平面,平面DMN,平面;(2)設(shè)中點(diǎn)為,連接、為等邊三角形,是等腰三角形,且頂角,、共線,平面平面.平面平面平面,交線為,平面平面.設(shè),則在中,由余弦定理,得:又,為中點(diǎn),建立直角坐標(biāo)系(如圖),則,.,設(shè)平面的法向量為,則,取,則,平面的法向量為,二面角為銳角,二面角的余弦值大小為.【點(diǎn)睛】本題考查面面平行證明線面平行,考查向量法求二面角的大小,考查學(xué)生計(jì)算能力和空間想象能力,是中檔題.21(1)(2)存在, 或【解析】(1)由得看成到兩定點(diǎn)的和為定值,滿足橢圓定義,用定義可解曲線的方程.(2)先討論斜率不存在情況是否符合題意,當(dāng)直線的斜率存在時(shí),設(shè)直線點(diǎn)斜式方程,由,可得,再直線與橢圓聯(lián)解,利用根的判別式得到關(guān)于的一元二次方程求解.【詳解】解:設(shè),由, ,可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度農(nóng)業(yè)科技園區(qū)肥料農(nóng)藥科研合作采購合同
- 2025年度租賃公寓人身安全免責(zé)及安全保障措施合同
- 2025年度森林資源砍伐與生態(tài)賠償協(xié)議書
- 二零二五年度股權(quán)變更與公司并購整合協(xié)議
- 2025年順豐快遞快遞業(yè)務(wù)快遞服務(wù)標(biāo)準(zhǔn)制定合同
- 2025年度無財(cái)產(chǎn)分割離婚協(xié)議書:子女共同撫養(yǎng)協(xié)議
- 二零二五年度農(nóng)業(yè)科技園區(qū)土地承包協(xié)議
- 2025年度離職員工離職后商業(yè)機(jī)密保護(hù)協(xié)議
- 物流調(diào)度合作協(xié)議書(2篇)
- 2025年度國際餐飲品牌國內(nèi)加盟授權(quán)合同
- 《祛痘產(chǎn)品祛痘產(chǎn)品》課件
- 江蘇省南京鼓樓區(qū)2024年中考聯(lián)考英語試題含答案
- 人輪狀病毒感染
- 兒科護(hù)理學(xué)試題及答案解析-神經(jīng)系統(tǒng)疾病患兒的護(hù)理(二)
- 《石油產(chǎn)品分析》課件-車用汽油
- 15篇文章包含英語四級所有詞匯
- 王陽明心學(xué)完整版本
- 四年級上冊豎式計(jì)算300題及答案
- 保潔班長演講稿
- 課題研究實(shí)施方案 范例及課題研究方法及技術(shù)路線圖模板
- 牙髓炎中牙髓干細(xì)胞與神經(jīng)支配的相互作用
評論
0/150
提交評論