版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、class-exercises1 、F=(A+B+D) (A+B+D) (A+B+D) (A+C+D) (A+C+D) FD = ? F= ? Review of the last class反演定理:對(duì)偶定理: FD(X1 , X2 , , Xn , + , , ) = F(X1 , X2 , ,Xn , , + , ) G1ABFA B FL L LL H LH L LH H HElectrical FunctionTable (電氣功能表)A B F0 0 00 1 01 0 01 1 1A B F1 1 11 0 10 1 10 0 0Positive-Logic (正邏輯): F =
2、 ABNegative-Logic (負(fù)邏輯): F = A+BThe relationship of Positive-Logic Convention and Negative-Logic Convention are DualityABFA=A B=BF = FF(X1,X2,Xn,+,.,) = FD(X1,X2,Xn,+,.,)F(X1,X2,Xn,+,.,) = FD(X1,X2,Xn,+,.,)Example :F=(A+BC)+D(E+F)F=?FD=?Review of the last classF=(A+BC)+D(E+F)F= A (B+C) D+(E F)FD= A
3、(B+C) D+(E F)F= A (B+C) D+(E F) Example: Review of the last classF(X1,X2,Xn,+,.,) =FD(X1,X2,Xn,+,.,)Truth table 真值表product term 乘積項(xiàng) sum term 求和項(xiàng) sum-of-products expression “積之和”表達(dá)式product-of-sums expression “和之積”表達(dá)式n-variable minterm n 變量最小項(xiàng)n-variable maxterm n 變量最大項(xiàng)normal terms 標(biāo)準(zhǔn)項(xiàng)canonical sum 標(biāo)準(zhǔn)和
4、canonical product 標(biāo)準(zhǔn)積 最小項(xiàng)之和 最大項(xiàng)之積4.1.6 Standard Representations of Logic Functions (P196)A minterm can be defined as a product term that is 1 in exactly one row of the truth table.An n-variable minterm can be represented by an n-bit integer, the minterm number. (最小項(xiàng)編號(hào)) (P198)ABCABCABCABCABCABCABCABC
5、0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1ABC乘積項(xiàng)(Product Term )Minterms (最小項(xiàng)) (P197)Minterms (最小項(xiàng)) An n-variable Minterm is a normal product term with n literals (n個(gè)因子的標(biāo)準(zhǔn)乘積項(xiàng))There are 2n such product terms (n變量函數(shù)具有2n個(gè)最小項(xiàng))0 is the product of Any two different minterms. (任意兩個(gè)不同最小項(xiàng)的乘積為0)Plus of all minte
6、rms is 1. (全體最小項(xiàng)之和為1)ABCABCABCABCABCABCABCABC0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1ABCProduct Term(乘積項(xiàng))最大項(xiàng) ( Maxterms )a maxterm can be defined as a sum term that is 0 in exactly one row of the truth table. A+B+CA+B+CA+B+CA+B+CA+B+CA+B+CA+B+CA+B+C0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1ABCSum Term
7、(求和項(xiàng))Maxterms (最大項(xiàng)) (P197)Maxterms (最大項(xiàng)) An n-variable maxterm is a normal sum term with n literals. (n變量最大項(xiàng)是具有n個(gè)因子的標(biāo)準(zhǔn)求和項(xiàng))There are 2n such maxterms. (n變量函數(shù)具有2n個(gè)最大項(xiàng))Any two different sum terms produce 1. (任意兩個(gè)最大項(xiàng)的和為1) Product of all maxterms is 0. (全體最大項(xiàng)之積為0)A+B+CA+B+CA+B+CA+B+CA+B+CA+B+CA+B+CA+B+C0
8、 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1ABC求和項(xiàng)(Sum Term)ABCABCABCABCABCABCABCABCm0m1m2m3m4m5m6m7 minterm0 0 0 00 0 1 10 1 0 20 1 1 31 0 0 41 0 1 51 1 0 61 1 1 7ABCrowA+B+CA+B+CA+B+CA+B+CA+B+CA+B+CA+B+CA+B+CM0M1M2M3M4M5M6M7 maxtermMinterms and MaxtermsStandard Representations of Logic Functions 邏輯函數(shù)的的
9、標(biāo)準(zhǔn)形式1、canonical sum (標(biāo)準(zhǔn)和) The canonical sum of a logic function is a sum of the minterms corresponding totruth-table rows (input combinations) for which the function produces a 1 output.F =X,Y,Z(0,3,4,6,7) =X.Y. Z + X. Y . Z + X . Y. Z + X . Y .Z + X .Y . ZX,Y,Z(0,3,4,6,7): is a minterm list . (最小項(xiàng)列
10、表)The minterm list is also knownas the on-set for the logic function. (開集)0 0 0 00 0 1 00 1 0 00 1 1 11 0 0 01 0 1 01 1 0 11 1 1 1ABCF真值表00010000F1= + +00000010F200000001F3Why the canonical sum of a logic is a sum of the minterms?Standard Representations of Logic Functions 邏輯函數(shù)的的標(biāo)準(zhǔn)形式2、canonical prod
11、uct(標(biāo)準(zhǔn)積) The canonical product of a logic function is a product of the maxterms corresponding to input combinations for which the function produces a 0 output. F =X,Y,Z(1,2,5) =(X+Y+Z). (X+Y+Z). (X+Y+Z) X,Y,Z(1,2,5) is a maxterm list . (最大項(xiàng)列表)The maxterm list is also knownas the off-set for the logi
12、c function. (閉集)0 0 0 00 0 1 10 1 0 10 1 1 01 0 0 11 0 1 11 1 0 11 1 1 0ABCF真值表01111111F1= 11101111F211111110F3Why the canonical product of a logic is a product of the maxterms?Relationship of Minterm and Maxterm11101001G0 0 0 00 0 1 00 1 0 00 1 1 11 0 0 01 0 1 11 1 0 11 1 1 0ABCF(ABC) = A+B+C(ABC)
13、= A+B+C(ABC) = A+B+CMi = mimi = Mi標(biāo)號(hào)互補(bǔ)exampleWhat is the duality of F1? F1D = (A,B,C) ( 0, 2, 6 )( m i )D = M (2 n -1) - i F1 = (A,B,C) ( 1, 5, 7) Mi = mi ; mi = Mi ;一個(gè) n 變量函數(shù),既可用最小項(xiàng)之和表示,也可用最大項(xiàng)之積表示,兩者下標(biāo)互補(bǔ)。 某邏輯函數(shù) F,若用 P 項(xiàng)最小項(xiàng)之和表示,則其反函數(shù) F 可用 P 項(xiàng)最大項(xiàng)之積表示,兩者標(biāo)號(hào)完全一致。Relationship of Minterm and Maxterm一個(gè) n 變
14、量函數(shù)的最小項(xiàng) mi,其對(duì)偶(Duality)為:( m i )D = M (2 n -1) - i five possible representations for a combinational logic function:1. A truth table.2. An algebraic sum of minterms, the canonical sum.3. A minterm list using the notation.4. An algebraic product of maxterms, the canonical product.5. A maxterm list us
15、ing the notation.1. Logic Expression to Truth Table 邏輯表達(dá)式真值表Y = (B+C) (A+B+C)0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1ABCB+CA+B+CY001111110111111111110000product-of-sums expression (“和之積”表達(dá)式 )OR-AND expression(“或與”式)2、 Truth Table t o Logic Expression 真值表 邏輯表達(dá)式ABC0 0 0 00 0 1 00 1 0 00 1 1 11 0 0 01
16、0 1 11 1 0 11 1 1 0ABCF真值表ABCABCF = ABC + ABC + ABCsum-of-products expression (“積之和”表達(dá)式)AND-OR expression (“與-或”式)2、 Truth Table to Logic Expression 真值表 邏輯表達(dá)式0 0 0 10 0 1 10 1 0 00 1 1 11 0 0 01 0 1 11 1 0 11 1 1 1ABCF真值表A+B+CA+B+CF = (A+B+C) (A+B+C)product-of-sums expression (“和之積”表達(dá)式 )OR-AND expre
17、ssion(“或與”式)2、 Truth Table t LogicExpression 真值表 邏輯表達(dá)式11101111G0 0 0 00 0 1 00 1 0 00 1 1 11 0 0 01 0 1 01 1 0 01 1 1 0ABCF真值表(ABC) = A+B+CF = ABCG = (A+B+C)=FRepresent the logical function with canonical Sum: F(A,B,C) = AB +AC利用基本公式 A + A = 1F(A,B,C) = AB + AC = AB(C+C) + AC(B+B) = ABC + ABC + ABC
18、+ ABC1 1 11 1 00 1 10 0 1= A,B,C(1,3,6,7)G(A,B,C) = (A+B) (A+C) = (A+B+CC) (A+C+BB) = (A+B+C)(A+B+C)(A+B+C)(A+B+C)0 0 00 0 11 0 01 1 0= A,B,C(0,1,4,6)Represent the logical function with canonical productThinkingIf , ,what is the relation between the fonction F and fonction G, complement or duality?B
19、asic operations of the logic functions相加(或)相乘(與)反演對(duì)偶 F1D = (A,B,C,D) ( 2, 6, 8, 10, 14 ) F1 = (A,B,C,D) ( 1, 5, 7, 9, 13 )F2 = (A,B,C,D) ( 2, 6, 9, 13, 15 )F = F1 + F2 = (A,B,C,D)(1,2,5,6,7,9,13,15)F = F1 F2 = (A,B,C,D) (9,13)F1 = (A,B,C,D) ( 1, 5, 7, 9, 13 )= (A,B,C,D) ( 0,2,3,4,6,8,10,11,12,14,15
20、)補(bǔ)充: XOR(異或) 、 XNOR(同或)Exclusive OR (異或) 當(dāng)兩個(gè)輸入相異時(shí), 結(jié)果為1。 同或(Exclusive NOR)當(dāng)兩個(gè)輸入相同時(shí), 結(jié)果為1。F = AB =AB+ABF = AB =AB+ABA B F0 0 00 1 11 0 11 1 0異 或A B F0 0 10 1 01 0 01 1 1同 或AB = (AB)Basic formula 異或(XOR)交換律:AB = BA結(jié)合律:A(BC) = (AB)C分配律:A(BC) = (AB)(AC) 因果互換關(guān)系 AB=C AC=B BC=A ABCD=0 0ABC=D c h a p t e r
21、4 4.1 Switching Algebra 4.2 Combinational Circuit Analysis4.3 Combinational Circuit Synthesis 4.4 Timing Hazards c h a p t e r 4 4.1 Switching Algebra 4.2 Combinational Circuit Analysis4.3 Combinational Circuit Synthesis 4.4 Timing Hazards 4.2 Combinational Circuit Analysis(分析) (P199) We analyze a c
22、ombinational logic circuit by obtaining a formal description of its logic function.ABFAB(AB)(AB)F = (AB) (AB) = AB + AB = ABProcess of the Analysis (P201)1.We build up a parenthesized logic expression corresponding to the logic operators and structure of the circuit. We start at the circuit inputs a
23、nd propagate expressions through gates toward the output.2.Using the theorems of switching algebra,we may simplify the expressions as we go, or we may defer all algebraic manipulations until an output expression is obtained. 4.2 Combinational Circuit Analysis分析步驟:由輸入到輸出逐級(jí)寫出邏輯函數(shù)表達(dá)式對(duì)輸出邏輯函數(shù)表達(dá)式進(jìn)行化簡(jiǎn)(列真值表
24、或畫波形圖)判斷邏輯功能例P149-圖4-17 c h a p t e r 4 4.1 Switching Algebra 4.2 Combinational Circuit Analysis4.3 Combinational Circuit Synthesis 4.4 Timing Hazards c h a p t e r 4 4.1 Switching Algebra 4.2 Combinational Circuit Analysis4.3 Combinational Circuit Synthesis 4.4 Timing Hazards 4.3 Combinational Circ
25、uit Synthesis(綜合) (P205)the description is a list of input combinations for which a signal should be on or off, the verbal equivalent of a truth table or the or notation introduced previously. write the corresponding logic expressions .Combinational Circuit Minimization Circuit Manipulations .4.3 Combinational Circuit Synthesis(綜合) (P205)1、用真值表表示輸入輸出的邏輯關(guān)系;2、寫出函數(shù)表達(dá)式并化簡(jiǎn);3、選擇合適的邏輯門電路,列出相應(yīng)門器件 的表達(dá)式;4、畫出邏輯電路圖;5、安裝調(diào)試,驗(yàn)證設(shè)計(jì)。4.3 Combinational Circuit Synthesis(綜合) (P205)4.3.1 Circuit Descriptions and De
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年綠色能源開發(fā)與利用合同
- 2024酒店管理星級(jí)酒店物業(yè)管理合同
- 2024石材石材勞務(wù)派遣與職業(yè)培訓(xùn)合同2篇
- 2024年租賃物業(yè)延期協(xié)議3篇
- 2024年購銷協(xié)議與購貨合同的異同
- 2024年食材配送外包協(xié)議2篇
- 2024幼兒園教師藝術(shù)教育項(xiàng)目合作協(xié)議3篇
- 2024年度科技型企業(yè)核心團(tuán)隊(duì)股權(quán)限制性授予協(xié)議書3篇
- 2024年道路照明設(shè)備安裝及維護(hù)承包協(xié)議版B版
- 2024年網(wǎng)絡(luò)安全保障與合規(guī)檢查合同
- 2025湖北襄陽市12345政府熱線話務(wù)員招聘5人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 血細(xì)胞分析報(bào)告規(guī)范化指南2020
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實(shí)踐指導(dǎo)材料之7:“5領(lǐng)導(dǎo)作用-5.1領(lǐng)導(dǎo)作用和承諾”(雷澤佳編制-2025B0)
- 2024年快速消費(fèi)品物流配送合同6篇
- 廣東省茂名市2024屆高三上學(xué)期第一次綜合測(cè)試(一模)歷史 含解析
- 神經(jīng)重癥氣管切開患者氣道功能康復(fù)與管理學(xué)習(xí)與臨床應(yīng)用
- 第5章 一元一次方程大單元整體設(shè)計(jì) 北師大版(2024)數(shù)學(xué)七年級(jí)上冊(cè)教學(xué)課件
- 人教版高一地理必修一期末試卷
- 遼寧省錦州市(2024年-2025年小學(xué)六年級(jí)語文)部編版期末考試(上學(xué)期)試卷及答案
- 2024年下半年鄂州市城市發(fā)展投資控股集團(tuán)限公司社會(huì)招聘【27人】易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- GB/T 29498-2024木門窗通用技術(shù)要求
評(píng)論
0/150
提交評(píng)論