版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2答題時(shí)請按要求用筆。3請按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知的垂心為,且是的中點(diǎn),則( )A14B12C10D82由曲線yx2與曲線y2x所圍成的平面圖形的面積為()A1
2、BCD3在邊長為1的等邊三角形中,點(diǎn)E是中點(diǎn),點(diǎn)F是中點(diǎn),則( )ABCD4若復(fù)數(shù)滿足,則( )ABCD5我國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果,哥德巴赫猜想的內(nèi)容是:每個(gè)大于2的偶數(shù)都可以表示為兩個(gè)素?cái)?shù)的和,例如:,那么在不超過18的素?cái)?shù)中隨機(jī)選取兩個(gè)不同的數(shù),其和等于16的概率為( )ABCD6要得到函數(shù)的圖象,只需將函數(shù)的圖象上所有點(diǎn)的( )A橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),再向左平移個(gè)單位長度B橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),再向右平移個(gè)單位長度C橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向左平移個(gè)單位長度D橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向右平移個(gè)單位長
3、度7拋物線的準(zhǔn)線與軸的交點(diǎn)為點(diǎn),過點(diǎn)作直線與拋物線交于、兩點(diǎn),使得是的中點(diǎn),則直線的斜率為( )ABC1D8若變量,滿足,則的最大值為( )A3B2CD109復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為則( )ABCD10已知雙曲線的左焦點(diǎn)為,直線經(jīng)過點(diǎn)且與雙曲線的一條漸近線垂直,直線與雙曲線的左支交于不同的兩點(diǎn),若,則該雙曲線的離心率為( )ABCD11已知若(1-ai )( 3+2i )為純虛數(shù),則a的值為 ( )ABCD12音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學(xué)趣味著名數(shù)學(xué)家傅立葉研究了樂聲的本質(zhì),他證明了所有的樂聲都能用數(shù)學(xué)表達(dá)式來描述,它們是一些形如的簡單正弦函數(shù)的和,其中頻率最低的
4、一項(xiàng)是基本音,其余的為泛音由樂聲的數(shù)學(xué)表達(dá)式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波下列函數(shù)中不能與函數(shù)構(gòu)成樂音的是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知以x2y =0為漸近線的雙曲線經(jīng)過點(diǎn),則該雙曲線的標(biāo)準(zhǔn)方程為_.14定義在上的奇函數(shù)滿足,并且當(dāng)時(shí),則_15已知,滿足約束條件則的最大值為_.16已知多項(xiàng)式(x1)3(x2)2x5a1x4a2x3a3x2a4xa5,則a4_,a5_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù),(1)若,求的單調(diào)區(qū)間和極值;(2)設(shè),且有兩個(gè)極值點(diǎn),若,求的最小值.18
5、(12分)在平面直角坐標(biāo)系xOy中,拋物線C:,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為().(1)求拋物線C的極坐標(biāo)方程;(2)若拋物線C與直線l交于A,B兩點(diǎn),求的值.19(12分)如圖1,與是處在同-個(gè)平面內(nèi)的兩個(gè)全等的直角三角形,連接是邊上一點(diǎn),過作,交于點(diǎn),沿將向上翻折,得到如圖2所示的六面體(1)求證:(2)設(shè)若平面底面,若平面與平面所成角的余弦值為,求的值;(3)若平面底面,求六面體的體積的最大值.20(12分)設(shè)都是正數(shù),且,求證:21(12分)在平面直角坐標(biāo)系中,點(diǎn)是直線上的動(dòng)點(diǎn),為定點(diǎn),點(diǎn)為的中點(diǎn),動(dòng)點(diǎn)滿足,且,設(shè)點(diǎn)的軌跡為曲線.(1)求曲線
6、的方程;(2)過點(diǎn)的直線交曲線于,兩點(diǎn),為曲線上異于,的任意一點(diǎn),直線,分別交直線于,兩點(diǎn).問是否為定值?若是,求的值;若不是,請說明理由.22(10分)在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系;曲線C1的普通方程為(x-1)2 +y2 =1,曲線C2的參數(shù)方程為(為參數(shù)).()求曲線C1和C2的極坐標(biāo)方程:()設(shè)射線=(0)分別與曲線C1和C2相交于A,B兩點(diǎn),求|AB|的值參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1A【解析】由垂心的性質(zhì),得到,可轉(zhuǎn)化,又即得解.【詳解】因?yàn)闉榈拇剐?,所以?/p>
7、所以,而, 所以,因?yàn)槭堑闹悬c(diǎn),所以故選:A【點(diǎn)睛】本題考查了利用向量的線性運(yùn)算和向量的數(shù)量積的運(yùn)算率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.2B【解析】首先求得兩曲線的交點(diǎn)坐標(biāo),據(jù)此可確定積分區(qū)間,然后利用定積分的幾何意義求解面積值即可.【詳解】聯(lián)立方程:可得:,結(jié)合定積分的幾何意義可知曲線yx2與曲線y2x所圍成的平面圖形的面積為:.本題選擇B選項(xiàng).【點(diǎn)睛】本題主要考查定積分的概念與計(jì)算,屬于中等題.3C【解析】根據(jù)平面向量基本定理,用來表示,然后利用數(shù)量積公式,簡單計(jì)算,可得結(jié)果.【詳解】由題可知:點(diǎn)E是中點(diǎn),點(diǎn)F是中點(diǎn),所以又所以則故選:C【點(diǎn)睛】本題考查平面向量基
8、本定理以及數(shù)量積公式,掌握公式,細(xì)心觀察,屬基礎(chǔ)題.4B【解析】由題意得,求解即可.【詳解】因?yàn)?所以.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,考查運(yùn)算求解能力,屬于基礎(chǔ)題.5B【解析】先求出從不超過18的素?cái)?shù)中隨機(jī)選取兩個(gè)不同的數(shù)的所有可能結(jié)果,然后再求出其和等于16的結(jié)果,根據(jù)等可能事件的概率公式可求.【詳解】解:不超過18的素?cái)?shù)有2,3,5,7,11,13,17共7個(gè),從中隨機(jī)選取兩個(gè)不同的數(shù)共有,其和等于16的結(jié)果,共2種等可能的結(jié)果,故概率.故選:B.【點(diǎn)睛】古典概型要求能夠列舉出所有事件和發(fā)生事件的個(gè)數(shù),本題不可以列舉出所有事件但可以用分步計(jì)數(shù)得到,屬于基礎(chǔ)題.6C【解析】根據(jù)三
9、角函數(shù)圖像的變換與參數(shù)之間的關(guān)系,即可容易求得.【詳解】為得到,將橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),故可得;再將 向左平移個(gè)單位長度,故可得.故選:C.【點(diǎn)睛】本題考查三角函數(shù)圖像的平移,涉及誘導(dǎo)公式的使用,屬基礎(chǔ)題.7B【解析】設(shè)點(diǎn)、,設(shè)直線的方程為,由題意得出,將直線的方程與拋物線的方程聯(lián)立,列出韋達(dá)定理,結(jié)合可求得的值,由此可得出直線的斜率.【詳解】由題意可知點(diǎn),設(shè)點(diǎn)、,設(shè)直線的方程為,由于點(diǎn)是的中點(diǎn),則,將直線的方程與拋物線的方程聯(lián)立得,整理得,由韋達(dá)定理得,得,解得,因此,直線的斜率為.故選:B.【點(diǎn)睛】本題考查直線斜率的求解,考查直線與拋物線的綜合問題,涉及韋達(dá)定理設(shè)而不求法的
10、應(yīng)用,考查運(yùn)算求解能力,屬于中等題.8D【解析】畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可【詳解】解:畫出滿足條件的平面區(qū)域,如圖示:如圖點(diǎn)坐標(biāo)分別為,目標(biāo)函數(shù)的幾何意義為,可行域內(nèi)點(diǎn)與坐標(biāo)原點(diǎn)的距離的平方,由圖可知到原點(diǎn)的距離最大,故.故選:D【點(diǎn)睛】本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,屬于中檔題9B【解析】求得復(fù)數(shù),結(jié)合復(fù)數(shù)除法運(yùn)算,求得的值.【詳解】易知,則.故選:B【點(diǎn)睛】本小題主要考查復(fù)數(shù)及其坐標(biāo)的對應(yīng),考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.10A【解析】直線的方程為,令和雙曲線方程聯(lián)立,再由得到兩交點(diǎn)坐標(biāo)縱坐標(biāo)關(guān)系進(jìn)行求解即可.【詳解】由題意可知直線的方程為,
11、不妨設(shè).則,且將代入雙曲線方程中,得到設(shè)則由,可得,故則,解得則所以雙曲線離心率故選:A【點(diǎn)睛】此題考查雙曲線和直線相交問題,聯(lián)立直線和雙曲線方程得到兩交點(diǎn)坐標(biāo)關(guān)系和已知條件即可求解,屬于一般性題目.11A【解析】根據(jù)復(fù)數(shù)的乘法運(yùn)算法則化簡可得,根據(jù)純虛數(shù)的概念可得結(jié)果.【詳解】由題可知原式為,該復(fù)數(shù)為純虛數(shù),所以.故選:A【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算和復(fù)數(shù)的分類,屬基礎(chǔ)題.12C【解析】由基本音的諧波的定義可得,利用可得,即可判斷選項(xiàng).【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點(diǎn)睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.二、填
12、空題:本題共4小題,每小題5分,共20分。13【解析】設(shè)雙曲線方程為,代入點(diǎn),計(jì)算得到答案.【詳解】雙曲線漸近線為,則設(shè)雙曲線方程為:,代入點(diǎn),則.故雙曲線方程為:.故答案為:.【點(diǎn)睛】本題考查了根據(jù)漸近線求雙曲線,設(shè)雙曲線方程為是解題的關(guān)鍵.14【解析】根據(jù)所給表達(dá)式,結(jié)合奇函數(shù)性質(zhì),即可確定函數(shù)對稱軸及周期性,進(jìn)而由的解析式求得的值.【詳解】滿足,由函數(shù)對稱性可知關(guān)于對稱,且令,代入可得,由奇函數(shù)性質(zhì)可知,所以令,代入可得,所以是以4為周期的周期函數(shù),則當(dāng)時(shí),所以,所以,故答案為:.【點(diǎn)睛】本題考查了函數(shù)奇偶性與對稱性的綜合應(yīng)用,周期函數(shù)的判斷及應(yīng)用,屬于中檔題.151【解析】先畫出約束條
13、件的可行域,根據(jù)平移法判斷出最優(yōu)點(diǎn),代入目標(biāo)函數(shù)的解析式,易可得到目標(biāo)函數(shù)的最大值【詳解】解:由約束條件得如圖所示的三角形區(qū)域,由于,則,要求的最大值,則求的截距的最小值,顯然當(dāng)平行直線過點(diǎn)時(shí),取得最大值為:.故答案為:1【點(diǎn)睛】本題考查線性規(guī)劃求最值問題,我們常用幾何法求最值.1616 4 【解析】只需令x0,易得a5,再由(x1)3(x2)2(x1)52(x1)4(x1)3,可得a42.【詳解】令x0,得a5(01)3(02)24,而(x1)3(x2)2(x1)3(x1)22(x1)1(x1)52(x1)4(x1)3;則a4258316.故答案為:16,4.【點(diǎn)睛】本題主要考查了多項(xiàng)式展開
14、中的特定項(xiàng)的求解,可以用賦值法也可以用二項(xiàng)展開的通項(xiàng)公式求解,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)增區(qū)間為,減區(qū)間為; 極小值,無極大值;(2)【解析】(1)求出f(x)的導(dǎo)數(shù),解不等式,即可得到函數(shù)的單調(diào)區(qū)間,進(jìn)而得到函數(shù)的極值;(2)由題意可得,求出的表達(dá)式,求出h(t)的最小值即可【詳解】(1)將代入中,得到,求導(dǎo),得到,結(jié)合,當(dāng)?shù)玫剑?增區(qū)間為,當(dāng),得減區(qū)間為且在時(shí)有極小值,無極大值.(2)將解析式代入,得,求導(dǎo)得到,令,得到,,因?yàn)?,所以設(shè),令,則所以在單調(diào)遞減,又因?yàn)樗?所以 或又因?yàn)?,所?所以,所以的最小值為.【點(diǎn)睛】本題考查了
15、函數(shù)的單調(diào)性、極值、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)的極值的意義,考查轉(zhuǎn)化思想與減元意識(shí),是一道綜合題18(1)(2)【解析】(1)利用極坐標(biāo)和直角坐標(biāo)的互化公式,,即可求得結(jié)果.(2) 由的幾何意義得,. 將代入拋物線C的方程,利用韋達(dá)定理,即可求得結(jié)果.【詳解】(1)因?yàn)椋氲?,所以拋物線C的極坐標(biāo)方程為.(2)將代入拋物線C的方程得,所以,所以,由的幾何意義得,.【點(diǎn)睛】本題考查直角坐標(biāo)和極坐標(biāo)的轉(zhuǎn)化,考查極坐標(biāo)方程的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化與劃歸,數(shù)學(xué)運(yùn)算的能力,難度一般.19(1)證明見解析(2)(3)【解析】根據(jù)折疊圖形, ,由線面垂直的判定定理可得平面,再根據(jù)平面,得
16、到.(2)根據(jù),以為坐標(biāo)原點(diǎn),為軸建立空間直角坐標(biāo)系,根據(jù),可知,表示相應(yīng)點(diǎn)的坐標(biāo),分別求得平面與平面的法向量,代入求解.設(shè)所求幾何體的體積為,設(shè)為高,則,表示梯形BEFD和 ABD的面積由,再利用導(dǎo)數(shù)求最值.【詳解】(1)證明:不妨設(shè)與的交點(diǎn)為與的交點(diǎn)為由題知,則有又,則有由折疊可知所以可證由平面平面,則有平面又因?yàn)槠矫妫?(2)解:依題意,有平面平面,又平面,則有平面,又由題意知,如圖所示:以為坐標(biāo)原點(diǎn),為軸建立如圖所示的空間直角坐標(biāo)系由題意知由可知,則則有,設(shè)平面與平面的法向量分別為則有則所以因?yàn)?,解得設(shè)所求幾何體的體積為,設(shè),則,當(dāng)時(shí),當(dāng)時(shí),在是增函數(shù),在上是減函數(shù)當(dāng)時(shí),有最大值,
17、即六面體的體積的最大值是【點(diǎn)睛】本題主要考查線線垂直,線面垂直,面面垂直的轉(zhuǎn)化,二面角的向量求法和空間幾何體的體積,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于難題.20證明見解析【解析】利用比較法進(jìn)行證明:把代數(shù)式展開、作差、化簡可得,可證得成立,同理可證明,由此不等式得證.【詳解】證明:因?yàn)?,所以 , 成立,又都是正數(shù),同理,【點(diǎn)睛】本題考查利用比較法證明不等式;考查學(xué)生的邏輯推理能力和運(yùn)算求解能力;把差變形為因式乘積的形式是證明本題的關(guān)鍵;屬于中檔題。21(1);(2)是定值,.【解析】(1)設(shè)出M的坐標(biāo)為,采用直接法求曲線的方程;(2)設(shè)AB的方程為,,,求出AT方程,聯(lián)立直線方程得D點(diǎn)的坐標(biāo),同理可得E點(diǎn)的坐標(biāo),最后利用向量數(shù)量積算即可.【詳解】(1)設(shè)動(dòng)點(diǎn)M的坐標(biāo)為,由知,又在直線上,所以P點(diǎn)坐標(biāo)為,又,點(diǎn)為的中點(diǎn),所以,由得,即;(2)設(shè)直線AB的方程為,代入得,設(shè),則,設(shè),則,所以AT的直線方程為即,令,則,所以D點(diǎn)的坐標(biāo)為,同理E點(diǎn)的坐標(biāo)為,于是,所以,從而,所以是定值.【點(diǎn)睛】本題考查了直接法求拋物線的軌跡方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版權(quán)許可使用合同案例分析
- 2024年資產(chǎn)評估合同
- 2024年銷售領(lǐng)域信譽(yù)擔(dān)保協(xié)議樣本一
- 2024年輪胎買賣協(xié)議范本版
- 2022-2024年三年高考1年模擬生物試題分類:生物的變異、育種與進(jìn)化(解析版)
- 2024年線上線下產(chǎn)品推廣合作協(xié)議
- 2024年貨物押運(yùn)服務(wù)合同
- 2024宅基地施工期間施工用水用電合同3篇
- 勞務(wù)派遣市場調(diào)研協(xié)議書
- 勞務(wù)派遣服務(wù)過程協(xié)議書
- 61850基礎(chǔ)技術(shù)介紹0001
- 陶瓷色料的技術(shù)PPT課件
- 幼兒園食品安全工作計(jì)劃四篇
- 課程設(shè)計(jì)YA32-350型四柱萬能液壓機(jī)液壓系統(tǒng)設(shè)計(jì)
- 圍堰高噴防滲墻工程監(jiān)理實(shí)施細(xì)則
- (精心整理)系動(dòng)詞練習(xí)題
- 體彩排列五歷史數(shù)據(jù)
- 中國工業(yè)數(shù)據(jù)庫介紹
- 弱電智能化設(shè)計(jì)服務(wù)建議書(共35頁)
- 中國銀監(jiān)會(huì)關(guān)于規(guī)范中長期貸款還款方式的通知
- 通信工程外文文獻(xiàn)(共12頁)
評論
0/150
提交評論