湖北省武漢市鋼城2022年高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第1頁
湖北省武漢市鋼城2022年高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第2頁
湖北省武漢市鋼城2022年高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第3頁
湖北省武漢市鋼城2022年高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第4頁
湖北省武漢市鋼城2022年高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,指數(shù)學(xué).某校國學(xué)社團開展

2、“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在第三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同的排課順序共有( )A12種B24種C36種D48種2已知函數(shù),將函數(shù)的圖象向左平移個單位長度后,所得到的圖象關(guān)于軸對稱,則的最小值是( )ABCD3一個頻率分布表(樣本容量為)不小心被損壞了一部分,只記得樣本中數(shù)據(jù)在上的頻率為,則估計樣本在、內(nèi)的數(shù)據(jù)個數(shù)共有( )ABCD4設(shè)不等式組表示的平面區(qū)域為,若從圓:的內(nèi)部隨機選取一點,則取自的概率為( )ABCD5如圖,四邊形為平行四邊形,為中點,為的三等分點(靠近)若,則的值為( )ABCD6等比

3、數(shù)列若則( )A6B6C-6D7若為虛數(shù)單位,則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限8若復(fù)數(shù)為虛數(shù)單位在復(fù)平面內(nèi)所對應(yīng)的點在虛軸上,則實數(shù)a為( )AB2CD9閱讀名著,品味人生,是中華民族的優(yōu)良傳統(tǒng).學(xué)生李華計劃在高一年級每周星期一至星期五的每天閱讀半個小時中國四大名著:紅樓夢、三國演義、水滸傳及西游記,其中每天閱讀一種,每種至少閱讀一次,則每周不同的閱讀計劃共有( )A120種B240種C480種D600種10已知向量,則與的夾角為( )ABCD11設(shè)函數(shù),則函數(shù)的圖像可能為( )ABCD12已知是的共軛復(fù)數(shù),則( )ABCD二、填空題:本題共

4、4小題,每小題5分,共20分。13已知,且,則最小值為_14已知數(shù)列的首項,函數(shù)在上有唯一零點,則數(shù)列|的前項和_.15在矩形中,為的中點,將和分別沿,翻折,使點與重合于點.若,則三棱錐的外接球的表面積為_.16設(shè),滿足條件,則的最大值為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù),設(shè)為的導(dǎo)數(shù),(1)求,; (2)猜想的表達(dá)式,并證明你的結(jié)論18(12分)如圖,在四棱錐中,平面,四邊形為正方形,點為線段上的點,過三點的平面與交于點.將,中的兩個補充到已知條件中,解答下列問題:(1)求平面將四棱錐分成兩部分的體積比;(2)求直線與平面所成角的正弦值.1

5、9(12分)設(shè)函數(shù),是函數(shù)的導(dǎo)數(shù).(1)若,證明在區(qū)間上沒有零點;(2)在上恒成立,求的取值范圍.20(12分)已知函數(shù).(1)討論函數(shù)f(x)的極值點的個數(shù);(2)若f(x)有兩個極值點證明.21(12分)已知函數(shù),曲線在點處的切線在y軸上的截距為.(1)求a;(2)討論函數(shù)和的單調(diào)性;(3)設(shè),求證:.22(10分)年,山東省高考將全面實行“選”的模式(即:語文、數(shù)學(xué)、外語為必考科目,剩下的物理、化學(xué)、歷史、地理、生物、政治六科任選三科進(jìn)行考試).為了了解學(xué)生對物理學(xué)科的喜好程度,某高中從高一年級學(xué)生中隨機抽取人做調(diào)查.統(tǒng)計顯示,男生喜歡物理的有人,不喜歡物理的有人;女生喜歡物理的有人,不

6、喜歡物理的有人.(1)據(jù)此資料判斷是否有的把握認(rèn)為“喜歡物理與性別有關(guān)”;(2)為了了解學(xué)生對選科的認(rèn)識,年級決定召開學(xué)生座談會.現(xiàn)從名男同學(xué)和名女同學(xué)(其中男女喜歡物理)中,選取名男同學(xué)和名女同學(xué)參加座談會,記參加座談會的人中喜歡物理的人數(shù)為,求的分布列及期望.,其中.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】根據(jù)“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰有3類排法,再考慮兩者的順序,有種,剩余的3門全排列,即可求解.【詳解】由題意,“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰時,可排在第1節(jié)和第2節(jié)或第4

7、節(jié)和第5節(jié)或第5節(jié)和第6節(jié),有3種,再考慮兩者的順序,有種,剩余的3門全排列,安排在剩下的3個位置,有種,所以“六藝”課程講座不同的排課順序共有種不同的排法.故選:C.【點睛】本題主要考查了排列、組合的應(yīng)用,其中解答中認(rèn)真審題,根據(jù)題設(shè)條件,先排列有限制條件的元素是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.2A【解析】化簡為,求出它的圖象向左平移個單位長度后的圖象的函數(shù)表達(dá)式,利用所得到的圖象關(guān)于軸對稱列方程即可求得,問題得解?!驹斀狻亢瘮?shù)可化為:,將函數(shù)的圖象向左平移個單位長度后,得到函數(shù)的圖象,又所得到的圖象關(guān)于軸對稱,所以,解得:,即:,又,所以.故選:A.【點睛】本題

8、主要考查了兩角和的正弦公式及三角函數(shù)圖象的平移、性質(zhì)等知識,考查轉(zhuǎn)化能力,屬于中檔題。3B【解析】計算出樣本在的數(shù)據(jù)個數(shù),再減去樣本在的數(shù)據(jù)個數(shù)即可得出結(jié)果.【詳解】由題意可知,樣本在的數(shù)據(jù)個數(shù)為,樣本在的數(shù)據(jù)個數(shù)為,因此,樣本在、內(nèi)的數(shù)據(jù)個數(shù)為.故選:B.【點睛】本題考查利用頻數(shù)分布表計算頻數(shù),要理解頻數(shù)、樣本容量與頻率三者之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題.4B【解析】畫出不等式組表示的可行域,求得陰影部分扇形對應(yīng)的圓心角,根據(jù)幾何概型概率計算公式,計算出所求概率.【詳解】作出中在圓內(nèi)部的區(qū)域,如圖所示,因為直線,的傾斜角分別為,所以由圖可得取自的概率為.故選:B【點睛】本小題主要考查幾

9、何概型的計算,考查線性可行域的畫法,屬于基礎(chǔ)題.5D【解析】使用不同方法用表示出,結(jié)合平面向量的基本定理列出方程解出【詳解】解:,又解得,所以故選:D【點睛】本題考查了平面向量的基本定理及其意義,屬于基礎(chǔ)題6B【解析】根據(jù)等比中項性質(zhì)代入可得解,由等比數(shù)列項的性質(zhì)確定值即可.【詳解】由等比數(shù)列中等比中項性質(zhì)可知,所以,而由等比數(shù)列性質(zhì)可知奇數(shù)項符號相同,所以,故選:B.【點睛】本題考查了等比數(shù)列中等比中項的簡單應(yīng)用,注意項的符號特征,屬于基礎(chǔ)題.7B【解析】由共軛復(fù)數(shù)的定義得到,通過三角函數(shù)值的正負(fù),以及復(fù)數(shù)的幾何意義即得解【詳解】由題意得,因為,所以在復(fù)平面內(nèi)對應(yīng)的點位于第二象限故選:B【點

10、睛】本題考查了共軛復(fù)數(shù)的概念及復(fù)數(shù)的幾何意義,考查了學(xué)生概念理解,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.8D【解析】利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由實部為求得值【詳解】解:在復(fù)平面內(nèi)所對應(yīng)的點在虛軸上,即故選D【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題9B【解析】首先將五天進(jìn)行分組,再對名著進(jìn)行分配,根據(jù)分步乘法計數(shù)原理求得結(jié)果.【詳解】將周一至周五分為組,每組至少天,共有:種分組方法;將四大名著安排到組中,每組種名著,共有:種分配方法;由分步乘法計數(shù)原理可得不同的閱讀計劃共有:種本題正確選項:【點睛】本題考查排列組合中的分組分配問題,涉及到分步乘法

11、計數(shù)原理的應(yīng)用,易錯點是忽略分組中涉及到的平均分組問題.10B【解析】由已知向量的坐標(biāo),利用平面向量的夾角公式,直接可求出結(jié)果.【詳解】解:由題意得,設(shè)與的夾角為,由于向量夾角范圍為:,.故選:B.【點睛】本題考查利用平面向量的數(shù)量積求兩向量的夾角,注意向量夾角的范圍.11B【解析】根據(jù)函數(shù)為偶函數(shù)排除,再計算排除得到答案.【詳解】定義域為: ,函數(shù)為偶函數(shù),排除 ,排除 故選【點睛】本題考查了函數(shù)圖像,通過函數(shù)的單調(diào)性,奇偶性,特殊值排除選項是常用的技巧.12A【解析】先利用復(fù)數(shù)的除法運算法則求出的值,再利用共軛復(fù)數(shù)的定義求出a+bi,從而確定a,b的值,求出a+b【詳解】i,a+bii,a

12、0,b1,a+b1,故選:A【點睛】本題主要考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了共軛復(fù)數(shù)的概念,是基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13【解析】首先整理所給的代數(shù)式,然后結(jié)合均值不等式的結(jié)論即可求得其最小值.【詳解】,結(jié)合可知原式,且,當(dāng)且僅當(dāng)時等號成立.即最小值為.【點睛】在應(yīng)用基本不等式求最值時,要把握不等式成立的三個條件,就是“一正各項均為正;二定積或和為定值;三相等等號能否取得”,若忽略了某個條件,就會出現(xiàn)錯誤14【解析】由函數(shù)為偶函數(shù),可得唯一零點為,代入可得數(shù)列的遞推關(guān)系式,再進(jìn)行配湊轉(zhuǎn)換為等比數(shù)列,最后運用分部求和可得答案.【詳解】因為為偶函數(shù),在上有唯一零點

13、,所以,為首項為2,公比為2的等比數(shù)列.所以,.故答案為:【點睛】本題主要考查了函數(shù)的奇偶性和函數(shù)的零點,同時也考查了由遞推關(guān)系式求數(shù)列的通項,考查了數(shù)列的分部求和,屬于中檔題.15.【解析】計算外接圓的半徑,并假設(shè)外接球的半徑為R,可得球心在過外接圓圓心且垂直圓面的垂線上,然后根據(jù)面,即可得解.【詳解】由題意可知,所以可得面,設(shè)外接圓的半徑為,由正弦定理可得,即,設(shè)三棱錐外接球的半徑,因為外接球的球心為過底面圓心垂直于底面的直線與中截面的交點,則,所以外接球的表面積為.故答案為:.【點睛】本題考查三棱錐的外接球的應(yīng)用,屬于中檔題.16【解析】作出可行域,由得,平移直線,數(shù)形結(jié)合可求的最大值.

14、【詳解】作出可行域如圖所示由得,則是直線在軸上的截距.平移直線,當(dāng)直線經(jīng)過可行域內(nèi)的點時,最小,此時最大.解方程組,得,.故答案為:.【點睛】本題考查簡單的線性規(guī)劃,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17,;,證明見解析【解析】對函數(shù)進(jìn)行求導(dǎo),并通過三角恒等變換進(jìn)行轉(zhuǎn)化求得的表達(dá)式,對函數(shù)再進(jìn)行求導(dǎo)并通過三角恒等變換進(jìn)行轉(zhuǎn)化求得的表達(dá)式;根據(jù)中,的表達(dá)式進(jìn)行歸納猜想,再利用數(shù)學(xué)歸納法證明即可.【詳解】(1),其中, ,其中, (2)猜想, 下面用數(shù)學(xué)歸納法證明:當(dāng)時,成立, 假設(shè)時,猜想成立即 當(dāng)時,當(dāng)時,猜想成立由對成立【點睛】本題考查導(dǎo)數(shù)及其應(yīng)用、三

15、角恒等變換、歸納與猜想和數(shù)學(xué)歸納法;考查學(xué)生的邏輯推理能力和運算求解能力;熟練掌握用數(shù)學(xué)歸納法進(jìn)行證明的步驟是求解本題的關(guān)鍵;屬于中檔題.18(1);(2).【解析】若補充根據(jù)已知可得平面,從而有,結(jié)合,可得平面,故有,而,得到,成立與相同,成立,可得,所以任意補充兩個條件,結(jié)果都一樣,以作為條件分析;(1)設(shè),可得,進(jìn)而求出梯形的面積,可求出,即可求出結(jié)論;(2),以為坐標(biāo)原點,建立空間坐標(biāo)系,求出坐標(biāo),由(1)得為平面的法向量,根據(jù)空間向量的線面角公式即可求解.【詳解】第一種情況:若將,作為已知條件,解答如下:(1)設(shè)平面為平面.,平面,而平面平面,又為中點.設(shè),則.在三角形中,由知平面,

16、梯形的面積,平面,故,.(2)如圖,分別以所在直線為軸建立空間直角坐標(biāo)系,設(shè),則,由(1)得為平面的一個法向量,因為,所以直線與平面所成角的正弦值為.第二種情況:若將,作為已知條件,則由知平面,又,所以平面,又,故為中點,即,解答如上不變.第三種情況:若將,作為已知條件,由及第二種情況知,又,易知,解答仍如上不變.【點睛】本題考查空間點、線、面位置關(guān)系,以及體積、直線與平面所成的角,考查計算求解能力,屬于中檔題.19(1)證明見解析(2)【解析】(1)先利用導(dǎo)數(shù)的四則運算法則和導(dǎo)數(shù)公式求出,再由函數(shù)的導(dǎo)數(shù)可知,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,而,可知在區(qū)間上恒成立,即在區(qū)間上沒有零點;(2)由

17、題意可將轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)討論研究其在上的單調(diào)性,由,即可求出的取值范圍【詳解】(1)若,則,設(shè),則,故函數(shù)是奇函數(shù)當(dāng)時,這時,又函數(shù)是奇函數(shù),所以當(dāng)時,.綜上,當(dāng)時,函數(shù)單調(diào)遞增;當(dāng)時,函數(shù)單調(diào)遞減.又,故在區(qū)間上恒成立,所以在區(qū)間上沒有零點.(2),由,所以恒成立,若,則,設(shè),.故當(dāng)時,又,所以當(dāng)時,滿足題意;當(dāng)時,有,與條件矛盾,舍去; 當(dāng)時,令,則,又,故在區(qū)間上有無窮多個零點,設(shè)最小的零點為,則當(dāng)時,因此在上單調(diào)遞增.,所以.于是,當(dāng)時,得,與條件矛盾.故的取值范圍是.【點睛】本題主要考查導(dǎo)數(shù)的四則運算法則和導(dǎo)數(shù)公式的應(yīng)用,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,涉及分類討論思想

18、和放縮法的應(yīng)用,難度較大,意在考查學(xué)生的數(shù)學(xué)建模能力,數(shù)學(xué)運算能力和邏輯推理能力,屬于較難題20(1)見解析(2)見解析【解析】(1)求得函數(shù)的定義域和導(dǎo)函數(shù),對分成三種情況進(jìn)行分類討論,判斷出的極值點個數(shù).(2)由(1)知,結(jié)合韋達(dá)定理求得的關(guān)系式,由此化簡的表達(dá)式為,通過構(gòu)造函數(shù)法,結(jié)合導(dǎo)數(shù)證得,由此證得成立.【詳解】(1)函數(shù)的定義域為得, (i)當(dāng)時;,因為時,時,所以是函數(shù)的一個極小值點; (ii)若時,若,即時,在是減函數(shù),無極值點.若,即時,有兩根,不妨設(shè)當(dāng)和時,當(dāng)時,是函數(shù)的兩個極值點, 綜上所述時,僅有一個極值點;時,無極值點;時,有兩個極值點(2)由(1)知,當(dāng)且僅當(dāng)時,有極小值點和極大值點,且是方程的兩根,則 所以 設(shè),則,又,即,所以所以是上的單調(diào)減函數(shù),有兩個極值點,則【點睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值點,考查利用導(dǎo)數(shù)證明不等式,考查分類討論的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.21(1) (2)為減函數(shù),為增函數(shù). (3)證明見解析【解析】(1)求出導(dǎo)函數(shù),求出切線方程,令得切線的縱截距,可得(必須利用函數(shù)的單調(diào)性求解);(2)求函數(shù)的導(dǎo)數(shù),由導(dǎo)數(shù)的正負(fù)確定單調(diào)性;(3)不等式變形為,由遞減,得(),即,即,依次放縮,不等式,遞增得(),,先證,然后同樣放縮得出結(jié)論【詳解】解:(1)對求導(dǎo),得.因此.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論