版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數學模擬試卷注意事項:1 答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1函數在區(qū)間上的大致圖象如圖所示,則可能是( )ABCD2已知f(x)=是定義在R上的奇函數,則
2、不等式f(x-3)f(9-x2)的解集為( )A(-2,6)B(-6,2)C(-4,3)D(-3,4)3如圖,正三棱柱各條棱的長度均相等,為的中點,分別是線段和線段的動點(含端點),且滿足,當運動時,下列結論中不正確的是A在內總存在與平面平行的線段B平面平面C三棱錐的體積為定值D可能為直角三角形4設,是兩條不同的直線,是兩個不同的平面,給出下列四個命題:若,則;若,則;若,則;若,則;其中真命題的個數為( )ABCD5已知函數,滿足對任意的實數,都有成立,則實數的取值范圍為( )ABCD6某地區(qū)高考改革,實行“3+2+1”模式,即“3”指語文、數學、外語三門必考科目,“1”指在物理、歷史兩門科
3、目中必選一門,“2”指在化學、生物、政治、地理以及除了必選一門以外的歷史或物理這五門學科中任意選擇兩門學科,則一名學生的不同選科組合有()A8種B12種C16種D20種7在復平面內,復數對應的點的坐標為( )ABCD8第七屆世界軍人運動會于2019年10月18日至27日在中國武漢舉行,中國隊以133金64銀42銅位居金牌榜和獎牌榜的首位.運動會期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個運動場地提供服務,要求每個人都要被派出去提供服務,且每個場地都要有志愿者服務,則甲和乙恰好在同一組的概率是( )ABCD9已知雙曲線的一個焦點為,且與雙曲線的漸近線相同,則雙曲線的標準方程為( )
4、ABCD10已知符號函數sgnxf(x)是定義在R上的減函數,g(x)f(x)f(ax)(a1),則( )Asgng(x)sgn xBsgng(x)sgnxCsgng(x)sgnf(x)Dsgng(x)sgnf(x)11框圖與程序是解決數學問題的重要手段,實際生活中的一些問題在抽象為數學模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計算一組數據的方差,設計了如圖所示的程序框圖,其中輸入,則圖中空白框中應填入( )A,BC,D,12過雙曲線左焦點的直線交的左支于兩點,直線(是坐標原點)交的右支于點,若,且,則的離心率是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13的展
5、開式中常數項是_.14已知,滿足,則的展開式中的系數為_.15已知以x2y =0為漸近線的雙曲線經過點,則該雙曲線的標準方程為_.16如圖,、分別是雙曲線的左、右焦點,過的直線與雙曲線的兩條漸近線分別交于、兩點,若,則雙曲線的離心率是_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知橢圓,上頂點為,離心率為,直線交軸于點,交橢圓于,兩點,直線,分別交軸于點,()求橢圓的方程;()求證:為定值18(12分)已知函數()的圖象在處的切線為(為自然對數的底數)(1)求的值;(2)若,且對任意恒成立,求的最大值.19(12分)已知函數(1)當時,求不等式的解集;(2)
6、的圖象與兩坐標軸的交點分別為,若三角形的面積大于,求參數的取值范圍.20(12分)誠信是立身之本,道德之基,我校學生會創(chuàng)設了“誠信水站”,既便于學生用水,又推進誠信教育,并用“”表示每周“水站誠信度”,為了便于數據分析,以四周為一周期,如表為該水站連續(xù)十二周(共三個周期)的誠信數據統(tǒng)計:第一周第二周第三周第四周第一周期第二周期第三周期()計算表中十二周“水站誠信度”的平均數;()若定義水站誠信度高于的為“高誠信度”,以下為“一般信度”則從每個周期的前兩周中隨機抽取兩周進行調研,計算恰有兩周是“高誠信度”的概率; ()已知學生會分別在第一個周期的第四周末和第二個周期的第四周末各舉行了一次“以誠信
7、為本”的主題教育活動,根據已有數據,說明兩次主題教育活動的宣傳效果,并根據已有數據陳述理由.21(12分)已知函數.(1)求的極值;(2)若,且,證明:.22(10分)某企業(yè)原有甲、乙兩條生產線,為了分析兩條生產線的效果,先從兩條生產線生產的大量產品中各抽取了100件產品作為樣本,檢測一項質量指標值該項指標值落在內的產品視為合格品,否則為不合格品乙生產線樣本的頻數分布表質量指標合計頻數2184814162100(1)根據甲生產線樣本的頻率分布直方圖,以從樣本中任意抽取一件產品且為合格品的頻率近似代替從甲生產線生產的產品中任意抽取一件產品且為合格品的概率,估計從甲生產線生產的產品中任取5件恰有2
8、件為合格品的概率;(2)現在該企業(yè)為提高合格率欲只保留其中一條生產線,根據上述圖表所提供的數據,完成下面的列聯表,并判斷是否有90%把握認為該企業(yè)生產的這種產品的質量指標值與生產線有關?若有90%把握,請從合格率的角度分析保留哪條生產線較好?甲生產線乙生產線合計合格品不合格品合計附:,0.1500.1000.0500.0250.0100.0052.0722.7063.8415.0246.6357.879參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】根據特殊值及函數的單調性判斷即可;【詳解】解:當時,無意義,故排除A;又
9、,則,故排除D;對于C,當時,所以不單調,故排除C;故選:B【點睛】本題考查根據函數圖象選擇函數解析式,這類問題利用特殊值與排除法是最佳選擇,屬于基礎題.2C【解析】由奇函數的性質可得,進而可知在R上為增函數,轉化條件得,解一元二次不等式即可得解.【詳解】因為是定義在R上的奇函數,所以,即,解得,即,易知在R上為增函數.又,所以,解得.故選:C.【點睛】本題考查了函數單調性和奇偶性的應用,考查了一元二次不等式的解法,屬于中檔題.3D【解析】A項用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項利用線面垂直的判定定理;C項三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定
10、值,則體積是定值;D項用反證法說明三角形DMN不可能是直角三角形.【詳解】A項,用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確; B項,如圖:當M、N分別在BB1、CC1上運動時,若滿足BM=CN,則線段MN必過正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項,當M、N分別在BB1、CC1上運動時,A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項,若DMN為直角三角形,則必是以MDN為直角的直角三角形,但MN的最大值為BC1,而此時DM,DN的長大于BB1,所以
11、DMN不可能為直角三角形,故錯誤.故選D【點睛】本題考查了命題真假判斷、棱柱的結構特征、空間想象力和思維能力,意在考查對線面、面面平行、垂直的判定和性質的應用,是中檔題.4C【解析】利用線線、線面、面面相應的判定與性質來解決.【詳解】如果兩條平行線中一條垂直于這個平面,那么另一條也垂直于這個平面知正確;當直線平行于平面與平面的交線時也有,故錯誤;若,則垂直平面內以及與平面平行的所有直線,故正確;若,則存在直線且,因為,所以,從而,故正確.故選:C.【點睛】本題考查空間中線線、線面、面面的位置關系,里面涉及到了相應的判定定理以及性質定理,是一道基礎題.5B【解析】由題意可知函數為上為減函數,可知
12、函數為減函數,且,由此可解得實數的取值范圍.【詳解】由題意知函數是上的減函數,于是有,解得,因此,實數的取值范圍是故選:B.【點睛】本題考查利用分段函數的單調性求參數,一般要分析每支函數的單調性,同時還要考慮分段點處函數值的大小關系,考查運算求解能力,屬于中等題.6C【解析】分兩類進行討論:物理和歷史只選一門;物理和歷史都選,分別求出兩種情況對應的組合數,即可求出結果.【詳解】若一名學生只選物理和歷史中的一門,則有種組合;若一名學生物理和歷史都選,則有種組合;因此共有種組合.故選C【點睛】本題主要考查兩個計數原理,熟記其計數原理的概念,即可求出結果,屬于常考題型.7C【解析】利用復數的運算法則
13、、幾何意義即可得出【詳解】解:復數i(2+i)2i1對應的點的坐標為(1,2),故選:C【點睛】本題考查了復數的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎題8A【解析】根據題意,五人分成四組,先求出兩人組成一組的所有可能的分組種數,再將甲乙組成一組的情況,即可求出概率.【詳解】五人分成四組,先選出兩人組成一組,剩下的人各自成一組,所有可能的分組共有種,甲和乙分在同一組,則其余三人各自成一組,只有一種分法,與場地無關,故甲和乙恰好在同一組的概率是.故選:A.【點睛】本題考查組合的應用和概率的計算,屬于基礎題.9B【解析】根據焦點所在坐標軸和漸近線方程設出雙曲線的標準方程,結合焦點坐標
14、求解.【詳解】雙曲線與的漸近線相同,且焦點在軸上,可設雙曲線的方程為,一個焦點為,故的標準方程為.故選:B【點睛】此題考查根據雙曲線的漸近線和焦點求解雙曲線的標準方程,易錯點在于漏掉考慮焦點所在坐標軸導致方程形式出錯.10A【解析】根據符號函數的解析式,結合f(x)的單調性分析即可得解.【詳解】根據題意,g(x)f(x)f(ax),而f(x)是R上的減函數,當x0時,xax,則有f(x)f(ax),則g(x)f(x)f(ax)0,此時sgng ( x)1,當x0時,xax,則有f(x)f(ax),則g(x)f(x)f(ax)0,此時sgng ( x)0,當x0時,xax,則有f(x)f(ax)
15、,則g(x)f(x)f(ax)0,此時sgng ( x)1,綜合有:sgng ( x)sgn(x);故選:A【點睛】此題考查函數新定義問題,涉及函數單調性辨析,關鍵在于讀懂定義,根據自變量的取值范圍分類討論.11A【解析】依題意問題是,然后按直到型驗證即可.【詳解】根據題意為了計算7個數的方差,即輸出的,觀察程序框圖可知,應填入,故選:A.【點睛】本題考查算法與程序框圖,考查推理論證能力以及轉化與化歸思想,屬于基礎題.12D【解析】如圖,設雙曲線的右焦點為,連接并延長交右支于,連接,設,利用雙曲線的幾何性質可以得到,結合、可求離心率.【詳解】如圖,設雙曲線的右焦點為,連接,連接并延長交右支于.
16、因為,故四邊形為平行四邊形,故.又雙曲線為中心對稱圖形,故.設,則,故,故.因為為直角三角形,故,解得.在中,有,所以.故選:D.【點睛】本題考查雙曲線離心率,注意利用雙曲線的對稱性(中心對稱、軸對稱)以及雙曲線的定義來構造關于的方程,本題屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13-160【解析】試題分析:常數項為.考點:二項展開式系數問題.141【解析】根據二項式定理求出,然后再由二項式定理或多項式的乘法法則結合組合的知識求得系數【詳解】由題意,的展開式中的系數為故答案為:1【點睛】本題考查二項式定理,掌握二項式定理的應用是解題關鍵15【解析】設雙曲線方程為,代入點,計算
17、得到答案.【詳解】雙曲線漸近線為,則設雙曲線方程為:,代入點,則.故雙曲線方程為:.故答案為:.【點睛】本題考查了根據漸近線求雙曲線,設雙曲線方程為是解題的關鍵.16【解析】根據三角形中位線證得,結合判斷出垂直平分,由此求得的值,結合求得的值.【詳解】,為中點,垂直平分,即,即.故答案為:【點睛】本小題主要考查雙曲線離心率的求法,考查化歸與轉化的數學思想方法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17();(),證明見解析【解析】()根據題意列出關于,的方程組,解出,的值,即可得到橢圓的方程;()設點,點,易求直線的方程為:,令得,同理可得,所以,聯立直線與
18、橢圓方程,利用韋達定理代入上式,化簡即可得到【詳解】()解:由題意可知:,解得,橢圓的方程為:;()證:設點,點,聯立方程,消去得:,點,直線的方程為:,令得,同理可得,把式代入上式得:,為定值【點睛】本題主要考查直線與橢圓的位置關系、定值問題的求解;關鍵是能夠通過直線與橢圓聯立得到韋達定理的形式,利用韋達定理化簡三角形面積得到定值;考查計算能力與推理能力,屬于中檔題18 (1)a=-1,b=1;(2)-1.【解析】(1)對求導得,根據函數的圖象在處的切線為,列出方程組,即可求出的值;(2)由(1)可得,根據對任意恒成立,等價于對任意恒成立,構造,求出的單調性,由,可得存在唯一的零點,使得,利
19、用單調性可求出,即可求出的最大值.(1),.由題意知. (2)由(1)知:,對任意恒成立對任意恒成立對任意恒成立. 令,則.由于,所以在上單調遞增. 又,所以存在唯一的,使得,且當時,時,. 即在單調遞減,在上單調遞增.所以.又,即,. . , . 又因為對任意恒成立,又, . 點睛:利用導數研究不等式恒成立或存在型問題,首先要構造函數,利用導數研究函數的單調性,求出最值,進而得出相應的含參不等式,從而求出參數的取值范圍;也可分離變量,構造函數,直接把問題轉化為函數的最值問題.19(1)(2)【解析】(1)當時,不等式可化為:,再利用絕對值的意義,分,討論求解.(2)根據可得,得到函數的圖象與
20、兩坐標軸的交點坐標分別為,再利用三角形面積公式由求解.【詳解】(1)當時,不等式可化為:當時,不等式化為,解得:當時,不等式化為,解得:,當時,不等式化為解集為,綜上,不等式的解集為.(2)由題得,所以函數的圖象與兩坐標軸的交點坐標分別為,的面積為,由,得(舍),或,所以,參數的取值范圍是.【點睛】本題主要考查絕對值不等式的解法和絕對值函數的應用,還考查分類討論的思想和運算求解的能力,屬于中檔題.20();();()兩次活動效果均好,理由詳見解析.【解析】()結合表中的數據,代入平均數公式求解即可;()設抽到“高誠信度”的事件為,則抽到“一般信度”的事件為,則隨機抽取兩周,則有兩周為“高誠信度
21、”事件為,利用列舉法列出所有的基本事件和事件所包含的基本事件,利用古典概型概率計算公式求解即可;()結合表中的數據判斷即可.【詳解】()表中十二周“水站誠信度”的平均數.()設抽到“高誠信度”的事件為,則抽到“一般信度”的事件為,則隨機抽取兩周均為“高誠信度”事件為,總的基本事件為共15種,事件所包含的基本事件為共10種,由古典概型概率計算公式可得,.()兩次活動效果均好.理由:活動舉辦后,“水站誠信度由和看出,后繼一周都有提升.【點睛】本題考查平均數公式和古典概型概率計算公式;考查運算求解能力;利用列舉法正確列舉出所有的基本事件是求古典概型概率的關鍵;屬于中檔題、??碱}型.21(1)極大值為;極小值為;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《班組安全教育課程》課件
- 單位管理制度集粹選集【員工管理】十篇
- 單位管理制度合并選集【人力資源管理】十篇
- 七年級下《皇帝的新裝》蘇教版-課件
- 單位管理制度范例匯編【職員管理篇】十篇
- 《標準化裝修》課件
- 《項目管理手冊》附件1至附件123
- (高頻非選擇題25題)第1單元 中華人民共和國的成立和鞏固(解析版)
- 2019年高考語文試卷(新課標Ⅰ卷)(解析卷)
- 2015年高考語文試卷(新課標Ⅱ卷)(解析卷)
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應用實踐指導材料之14:“6策劃-6.3變更的策劃”(雷澤佳編制-2025B0)
- 2024年特厚板行業(yè)現狀分析:中國特厚板市場占總銷售量45.01%
- 2024版影視制作公司與演員經紀公司合作協議3篇
- 2024年上海市初三語文二模試題匯編之記敘文閱讀
- 2024年度上海市嘉定區(qū)工業(yè)廠房買賣合同2篇
- 2023-2024學年廣東省廣州市海珠區(qū)九年級(上)期末化學試卷(含答案)
- 音樂老師年度總結5篇
- 自動控制理論(哈爾濱工程大學)知到智慧樹章節(jié)測試課后答案2024年秋哈爾濱工程大學
- 探索2024:財務報表分析專業(yè)培訓資料
- 雙減背景下基于核心素養(yǎng)小學語文閱讀提升實踐研究結題報告
- 心電圖使用 課件
評論
0/150
提交評論