




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1定義在上的偶函數(shù),對(duì),且,有成立,已知,則,的大小關(guān)系為( )ABCD2復(fù)數(shù)的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限3已知雙曲線的中心在原點(diǎn)且一個(gè)焦點(diǎn)為,直線與其相交于,兩點(diǎn),若中點(diǎn)的橫坐標(biāo)為,則此雙曲線的方
2、程是ABCD4已知在中,角的對(duì)邊分別為,若函數(shù)存在極值,則角的取值范圍是( )ABCD5已知集合,則為( )A0,2)B(2,3C2,3D(0,26下列函數(shù)中,在區(qū)間上單調(diào)遞減的是( )ABC D7已知,則a,b,c的大小關(guān)系為( )ABCD8設(shè)集合,則( )ABCD9公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為( )(參考數(shù)據(jù): )A48B36C24D1210若集合,則ABCD
3、11設(shè),是空間兩條不同的直線,是空間兩個(gè)不同的平面,給出下列四個(gè)命題:若,則;若,則;若,則;若,則.其中正確的是( )ABCD12已知集合,則( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13的二項(xiàng)展開式中,含項(xiàng)的系數(shù)為_14將含有甲、乙、丙的6人平均分成兩組參加“文明交通”志愿者活動(dòng),其中一組指揮交通,一組分發(fā)宣傳資料,則甲、乙至少一人參加指揮交通且甲、丙不在同一個(gè)組的概率為_.15已知,滿足,則的展開式中的系數(shù)為_.16已知為等差數(shù)列,為其前n項(xiàng)和,若,則_.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)已知橢圓,過(guò)的直線與橢圓相交于兩點(diǎn),且
4、與軸相交于點(diǎn).(1)若,求直線的方程;(2)設(shè)關(guān)于軸的對(duì)稱點(diǎn)為,證明:直線過(guò)軸上的定點(diǎn).18(12分)如圖,在四棱錐中,底面為正方形,、分別為、的中點(diǎn)(1)求證:平面;(2)求直線與平面所成角的正弦值19(12分)在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(為參數(shù))以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為(1)求曲線的極坐標(biāo)方程;(2)設(shè)和交點(diǎn)的交點(diǎn)為,求 的面積20(12分)已知橢圓:過(guò)點(diǎn),過(guò)坐標(biāo)原點(diǎn)作兩條互相垂直的射線與橢圓分別交于,兩點(diǎn).(1)證明:當(dāng)取得最小值時(shí),橢圓的離心率為.(2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方
5、程;若不存在,請(qǐng)說(shuō)明理由.21(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為(),將曲線向左平移2個(gè)單位長(zhǎng)度得到曲線.(1)求曲線的普通方程和極坐標(biāo)方程;(2)設(shè)直線與曲線交于兩點(diǎn),求的取值范圍.22(10分)已知半徑為5的圓的圓心在x軸上,圓心的橫坐標(biāo)是整數(shù),且與直線4x+3y290相切(1)求圓的方程;(2)設(shè)直線axy+50(a0)與圓相交于A,B兩點(diǎn),求實(shí)數(shù)a的取值范圍;(3)在(2)的條件下,是否存在實(shí)數(shù)a,使得弦AB的垂直平分線l過(guò)點(diǎn)P(2,4),若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由參考答案一、選擇題:本題共
6、12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1A【解析】根據(jù)偶函數(shù)的性質(zhì)和單調(diào)性即可判斷.【詳解】解:對(duì),且,有在上遞增因?yàn)槎x在上的偶函數(shù)所以在上遞減又因?yàn)椋怨蔬x:A【點(diǎn)睛】考查偶函數(shù)的性質(zhì)以及單調(diào)性的應(yīng)用,基礎(chǔ)題.2A【解析】試題分析:由題意可得:. 共軛復(fù)數(shù)為,故選A.考點(diǎn):1.復(fù)數(shù)的除法運(yùn)算;2.以及復(fù)平面上的點(diǎn)與復(fù)數(shù)的關(guān)系3D【解析】根據(jù)點(diǎn)差法得,再根據(jù)焦點(diǎn)坐標(biāo)得,解方程組得,即得結(jié)果.【詳解】設(shè)雙曲線的方程為,由題意可得,設(shè),則的中點(diǎn)為,由且,得 , ,即,聯(lián)立,解得,故所求雙曲線的方程為故選D【點(diǎn)睛】本題主要考查利用點(diǎn)差法求雙曲線標(biāo)準(zhǔn)方
7、程,考查基本求解能力,屬于中檔題.4C【解析】求出導(dǎo)函數(shù),由有不等的兩實(shí)根,即可得不等關(guān)系,然后由余弦定理可及余弦函數(shù)性質(zhì)可得結(jié)論【詳解】,.若存在極值,則,又.又故選:C【點(diǎn)睛】本題考查導(dǎo)數(shù)與極值,考查余弦定理掌握極值存在的條件是解題關(guān)鍵5B【解析】先求出,得到,再結(jié)合集合交集的運(yùn)算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.【點(diǎn)睛】本題主要考查了集合的混合運(yùn)算,其中解答中熟記集合的交集、補(bǔ)集的定義及運(yùn)算是解答的關(guān)鍵,著重考查了計(jì)算能力,屬于基礎(chǔ)題.6C【解析】由每個(gè)函數(shù)的單調(diào)區(qū)間,即可得到本題答案.【詳解】因?yàn)楹瘮?shù)和在遞增,而在遞減.故選:C【點(diǎn)睛】本題主要考查常見(jiàn)簡(jiǎn)單函數(shù)
8、的單調(diào)區(qū)間,屬基礎(chǔ)題.7D【解析】與中間值1比較,可用換底公式化為同底數(shù)對(duì)數(shù),再比較大小【詳解】,又,即,故選:D.【點(diǎn)睛】本題考查冪和對(duì)數(shù)的大小比較,解題時(shí)能化為同底的化為同底數(shù)冪比較,或化為同底數(shù)對(duì)數(shù)比較,若是不同類型的數(shù),可借助中間值如0,1等比較8D【解析】利用一元二次不等式的解法和集合的交運(yùn)算求解即可.【詳解】由題意知,集合,由集合的交運(yùn)算可得,.故選:D【點(diǎn)睛】本題考查一元二次不等式的解法和集合的交運(yùn)算;考查運(yùn)算求解能力;屬于基礎(chǔ)題.9C【解析】由開始,按照框圖,依次求出s,進(jìn)行判斷?!驹斀狻?,故選C.【點(diǎn)睛】框圖問(wèn)題,依據(jù)框圖結(jié)構(gòu),依次準(zhǔn)確求出數(shù)值,進(jìn)行判斷,是解題關(guān)鍵。10C
9、【解析】解一元次二次不等式得或,利用集合的交集運(yùn)算求得.【詳解】因?yàn)榛?,所以,故選C.【點(diǎn)睛】本題考查集合的交運(yùn)算,屬于容易題.11C【解析】根據(jù)線面平行或垂直的有關(guān)定理逐一判斷即可.【詳解】解:、也可能相交或異面,故錯(cuò):因?yàn)?,所以或,因?yàn)椋?,故?duì):或,故錯(cuò):如圖因?yàn)?,在?nèi)過(guò)點(diǎn)作直線的垂線,則直線,又因?yàn)?,設(shè)經(jīng)過(guò)和相交的平面與交于直線,則又,所以因?yàn)椋?所以,所以,故對(duì).故選:C【點(diǎn)睛】考查線面平行或垂直的判斷,基礎(chǔ)題.12B【解析】求出集合,利用集合的基本運(yùn)算即可得到結(jié)論.【詳解】由,得,則集合,所以,.故選:B.【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,利用函數(shù)的性質(zhì)求出集合是解決本題的關(guān)鍵
10、,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】寫出二項(xiàng)展開式的通項(xiàng),然后取的指數(shù)為求得的值,則項(xiàng)的系數(shù)可求得.【詳解】,由,可得.含項(xiàng)的系數(shù)為.故答案為:【點(diǎn)睛】本題考查了二項(xiàng)式定理展開式、需熟記二項(xiàng)式展開式的通項(xiàng)公式,屬于基礎(chǔ)題.14【解析】先求出總的基本事件數(shù),再求出甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件數(shù),然后根據(jù)古典概型求解【詳解】6人平均分成兩組參加“文明交通”志愿者活動(dòng),其中一組指揮交通,一組分發(fā)宣傳資料的基本事件總數(shù)共有個(gè),甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件個(gè)數(shù)有:個(gè),所以甲、乙至少一人參加指揮交通且甲、丙不在同一組
11、的概率為.故答案為:【點(diǎn)睛】本題主要考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.151【解析】根據(jù)二項(xiàng)式定理求出,然后再由二項(xiàng)式定理或多項(xiàng)式的乘法法則結(jié)合組合的知識(shí)求得系數(shù)【詳解】由題意,的展開式中的系數(shù)為故答案為:1【點(diǎn)睛】本題考查二項(xiàng)式定理,掌握二項(xiàng)式定理的應(yīng)用是解題關(guān)鍵161【解析】試題分析:因?yàn)槭堑炔顢?shù)列,所以,即,又,所以,所以故答案為1【考點(diǎn)】等差數(shù)列的基本性質(zhì)【名師點(diǎn)睛】在等差數(shù)列五個(gè)基本量,中,已知其中三個(gè)量,可以根據(jù)已知條件,結(jié)合等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式列出關(guān)于基本量的方程(組)來(lái)求余下的兩個(gè)量,計(jì)算時(shí)須注意整體代換思想及方程思想的應(yīng)用
12、.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(1)或;(2)見(jiàn)解析【解析】(1)由已知條件利用點(diǎn)斜式設(shè)出直線的方程,則可表示出點(diǎn)的坐標(biāo),再由的關(guān)系表示出點(diǎn)的坐標(biāo),而點(diǎn)在橢圓上,將其坐標(biāo)代入橢圓方程中可求出直線的斜率;(2)設(shè)出兩點(diǎn)的坐標(biāo),則點(diǎn)的坐標(biāo)可以表示出,然后直線的方程與橢圓方程聯(lián)立成方程,消元后得到關(guān)于的一元二次方程,再利用根與系數(shù)的關(guān)系,再結(jié)合直線的方程,化簡(jiǎn)可得結(jié)果.【詳解】(1)由條件可知直線的斜率存在,則可設(shè)直線的方程為,則,由,有,所以,由在橢圓上,則,解得,此時(shí)在橢圓內(nèi)部,所以滿足直線與橢圓相交,故所求直線方程為或.(也可聯(lián)立直線與橢圓方程,由驗(yàn)證)(
13、2)設(shè),則,直線的方程為.由得,由,解得,當(dāng)時(shí),故直線恒過(guò)定點(diǎn).【點(diǎn)睛】此題考查的是直線與橢圓的位置關(guān)系中的過(guò)定點(diǎn)問(wèn)題,計(jì)算過(guò)程較復(fù)雜,屬于難題.18(1)見(jiàn)解析;(2).【解析】(1)利用中位線的性質(zhì)得出,然后利用線面平行的判定定理可證明出平面;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、所在直線分別為、軸建立空間直角坐標(biāo)系,設(shè),利用空間向量法可求得直線與平面所成角的正弦值.【詳解】(1)因?yàn)?、分別為、的中點(diǎn),所以又因?yàn)槠矫?,平面,所以平面;?)以點(diǎn)為坐標(biāo)原點(diǎn),、所在直線分別為、軸建立空間直角坐標(biāo)系,設(shè),則,設(shè)平面的法向量為,則,即,令,則,所以設(shè)直線與平面所成角為,所以因此,直線與平面所成角的正弦值為.【點(diǎn)
14、睛】本題考查線面平行的證明,同時(shí)也考查了利用空間向量法計(jì)算直線與平面所成的角,考查推理能力與計(jì)算能力,屬于中等題.19(1);(2)【解析】(1)先將曲線的參數(shù)方程化為普通方程,再將普通方程化為極坐標(biāo)方程即可.(2)將和的極坐標(biāo)方程聯(lián)立,求得兩個(gè)曲線交點(diǎn)的極坐標(biāo),即可由極坐標(biāo)的含義求得的面積.【詳解】(1)曲線的參數(shù)方程為(為參數(shù)),消去參數(shù)的的直角坐標(biāo)方程為所以的極坐標(biāo)方程為 (2)解方程組,得到所以,則或()當(dāng)()時(shí),當(dāng)()時(shí),所以和的交點(diǎn)極坐標(biāo)為: ,. 所以故的面積為【點(diǎn)睛】本題考查了參數(shù)方程與普通方程的轉(zhuǎn)化,直角坐標(biāo)方程與極坐標(biāo)的轉(zhuǎn)化,利用極坐標(biāo)求三角形面積,屬于中檔題.20(1)證
15、明見(jiàn)解析;(2)存在,【解析】(1)將點(diǎn)代入橢圓方程得到,結(jié)合基本不等式,求得取得最小值時(shí),進(jìn)而證得橢圓的離心率為.(2)當(dāng)直線的斜率不存在時(shí),根據(jù)橢圓的對(duì)稱性,求得到直線的距離.當(dāng)直線的斜率存在時(shí),聯(lián)立直線的方程和橢圓方程,寫出韋達(dá)定理,利用,則列方程,求得的關(guān)系式,進(jìn)而求得到直線的距離.根據(jù)上述分析判斷出所求的圓存在,進(jìn)而求得定圓的方程.【詳解】(1)證明:橢圓經(jīng)過(guò)點(diǎn),當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,此時(shí)橢圓的離心率.(2)解:橢圓的焦距為2,又,.當(dāng)直線的斜率不存在時(shí),由對(duì)稱性,設(shè),.,在橢圓上,到直線的距離.當(dāng)直線的斜率存在時(shí),設(shè)的方程為.由,得,.設(shè),則,.,即,到直線的距離.綜上,到直線
16、的距離為定值,且定值為,故存在定圓:,使得圓與直線總相切.【點(diǎn)睛】本小題主要考查點(diǎn)和橢圓的位置關(guān)系,考查基本不等式求最值,考查直線和橢圓的位置關(guān)系,考查點(diǎn)到直線的距離公式,考查分類討論的數(shù)學(xué)思想方法,考查運(yùn)算求解能力,屬于中檔題.21(1)的極坐標(biāo)方程為,普通方程為;(2)【解析】(1)根據(jù)三角函數(shù)恒等變換可得, ,可得曲線的普通方程,再運(yùn)用圖像的平移得依題意得曲線的普通方程為,利用極坐標(biāo)與平面直角坐標(biāo)互化的公式可得方程;(2)法一:將代入曲線的極坐標(biāo)方程得,運(yùn)用韋達(dá)定理可得,根據(jù),可求得的范圍;法二:設(shè)直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),代入曲線的普通方程得,運(yùn)用韋達(dá)定理可得,根據(jù),
17、可求得的范圍;【詳解】(1), ,即曲線的普通方程為,依題意得曲線的普通方程為,令,得曲線的極坐標(biāo)方程為;(2)法一:將代入曲線的極坐標(biāo)方程得,則,異號(hào),;法二:設(shè)直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),代入曲線的普通方程得,則,異號(hào),.【點(diǎn)睛】本題考查參數(shù)方程與普通方程,極坐標(biāo)方程與平面直角坐標(biāo)方程之間的轉(zhuǎn)化,求解幾何量的取值范圍,關(guān)鍵在于明確極坐標(biāo)系中極徑和極角的幾何含義,直線的參數(shù)方程,參數(shù)的幾何意義,屬于中檔題.22(2)(x2)2+y22(2)()(3)存在,【解析】(2)設(shè)圓心為M(m,0),根據(jù)相切得到,計(jì)算得到答案.(2)把直線axy+50,代入圓的方程,計(jì)算4(5a2)24(a2+2)0得到答案.(3)l的方程為,即x+ay+24a0,過(guò)點(diǎn)M(2,0),計(jì)算得到答案.【詳解】(2)設(shè)圓心為M(m,0)(mZ)由于圓與直線4x+3y290相切,且半徑為5,所以 ,即|4m29|2因?yàn)閙為整數(shù),故m2故所求圓的方程為(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東省F市新就業(yè)形態(tài)勞動(dòng)者勞動(dòng)權(quán)益保障問(wèn)題研究
- 銑床加工流程
- 心理健康5A示范校匯報(bào)
- 慢阻肺健康宣教指南
- 頤和園教學(xué)說(shuō)課課件
- 腸道健康的重要性
- 頸椎術(shù)后護(hù)理課件
- 教師培訓(xùn)心得體會(huì)交流
- 中醫(yī)內(nèi)科學(xué):瘧疾診治要點(diǎn)
- 設(shè)備檢修培訓(xùn)內(nèi)容
- DB43-T 2988-2024 再生稻高產(chǎn)栽培技術(shù)規(guī)程
- 2024年荊州市荊發(fā)控股集團(tuán)招聘考試真題
- 慢病智能監(jiān)測(cè)-洞察及研究
- 部門預(yù)算支出經(jīng)濟(jì)分類科目
- TC260-PG-2025NA《網(wǎng)絡(luò)安全標(biāo)準(zhǔn)實(shí)踐指南 -人工智能生成合成內(nèi)容標(biāo)識(shí)服務(wù)提供者編碼規(guī)則》
- 2025年內(nèi)蒙古呼倫貝爾農(nóng)墾集團(tuán)有限公司招聘筆試沖刺題(帶答案解析)
- 《健康管理師》職業(yè)技能競(jìng)賽考試題(附答案)
- 在非到發(fā)線上接發(fā)列車站內(nèi)無(wú)空閑線路時(shí)的接發(fā)列車39課件
- 2025-2030年中國(guó)高超音速導(dǎo)彈行業(yè)市場(chǎng)現(xiàn)狀供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 村莊路燈安裝協(xié)議書
- GA/T 751-2024公安視頻圖像屏幕顯示信息疊加規(guī)范
評(píng)論
0/150
提交評(píng)論