第六節(jié)課-數(shù)據(jù)挖掘第五節(jié)_第1頁(yè)
第六節(jié)課-數(shù)據(jù)挖掘第五節(jié)_第2頁(yè)
第六節(jié)課-數(shù)據(jù)挖掘第五節(jié)_第3頁(yè)
第六節(jié)課-數(shù)據(jù)挖掘第五節(jié)_第4頁(yè)
第六節(jié)課-數(shù)據(jù)挖掘第五節(jié)_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第五節(jié)-數(shù)據(jù)挖掘soton機(jī)器學(xué)習(xí)導(dǎo)論什么是機(jī)器學(xué)習(xí)機(jī)器學(xué)習(xí)的種類代價(jià)函數(shù),優(yōu)化目標(biāo)模型泛化能力模型過(guò)擬合參考書(shū)籍?dāng)?shù)據(jù)挖掘?qū)д?參考課程machine learning 機(jī)器學(xué)習(xí)機(jī)器學(xué)習(xí)是人工智能的一個(gè)分支。人工智能的研究是從以“推理”為重點(diǎn)到以“知識(shí)”為重點(diǎn),再到以“學(xué)習(xí)”為重點(diǎn),一條自然、清晰的脈絡(luò)。顯然,機(jī)器學(xué)習(xí)是實(shí)現(xiàn)人工智能的一個(gè)途徑,即以機(jī)器學(xué)習(xí)為手段解決人工智能中的問(wèn)題。機(jī)器學(xué)習(xí)在近30多年已發(fā)展為一門(mén)多領(lǐng)域交叉學(xué)科,涉及概率論、統(tǒng)計(jì)學(xué)、逼近論、凸分析、計(jì)算復(fù)雜性理論等多門(mén)學(xué)科。機(jī)器學(xué)習(xí)理論主要是設(shè)計(jì)和分析一些讓計(jì)算機(jī)可以自動(dòng)“學(xué)習(xí)”的算法。機(jī)器學(xué)習(xí)算法是一類從數(shù)據(jù)中自動(dòng)分析獲得規(guī)

2、律,并利用規(guī)律對(duì)未知數(shù)據(jù)進(jìn)行預(yù)測(cè)的算法。因?yàn)閷W(xué)習(xí)算法中涉及了大量的統(tǒng)計(jì)學(xué)理論,機(jī)器學(xué)習(xí)與推斷統(tǒng)計(jì)學(xué)聯(lián)系尤為密切,也被稱為統(tǒng)計(jì)學(xué)習(xí)理論。算法設(shè)計(jì)方面,機(jī)器學(xué)習(xí)理論關(guān)注可以實(shí)現(xiàn)的,行之有效的學(xué)習(xí)算法。很多推論問(wèn)題屬于無(wú)程序可循難度,所以部分的機(jī)器學(xué)習(xí)研究是開(kāi)發(fā)容易處理的近似算法。類別機(jī)器學(xué)習(xí)可以分成下面幾種類別:監(jiān)督學(xué)習(xí)從給定的訓(xùn)練數(shù)據(jù)集中學(xué)習(xí)出一個(gè)函數(shù),當(dāng)新的數(shù)據(jù)到來(lái)時(shí),可以根據(jù)這個(gè)函數(shù)預(yù)測(cè)結(jié)果。監(jiān)督學(xué)習(xí)的訓(xùn)練集要求是包括輸入和輸出,也可以說(shuō)是特征和目標(biāo)。訓(xùn)練集中的目標(biāo)是由人標(biāo)注的。常見(jiàn)的監(jiān)督學(xué)習(xí)算法包括回歸分析和統(tǒng)計(jì)分類。無(wú)監(jiān)督學(xué)習(xí)與監(jiān)督學(xué)習(xí)相比,訓(xùn)練集沒(méi)有人為標(biāo)注的結(jié)果。常見(jiàn)的無(wú)監(jiān)督學(xué)習(xí)算法有聚類。半監(jiān)督學(xué)習(xí)介于監(jiān)督學(xué)習(xí)與無(wú)監(jiān)督學(xué)習(xí)之間。增強(qiáng)學(xué)習(xí)通過(guò)觀察來(lái)學(xué)習(xí)做成如何的動(dòng)作。每個(gè)動(dòng)作都會(huì)對(duì)環(huán)境有所影響,學(xué)習(xí)對(duì)象根據(jù)觀察到的周?chē)h(huán)境的反饋來(lái)做出判斷。講解算法線性回歸模型評(píng)估模型評(píng)估維基百科指標(biāo)計(jì)算不同的模型分類模型目標(biāo)變量是分類變量(離散值)回歸模型目標(biāo)變量是連續(xù)性數(shù)值變量評(píng)價(jià)標(biāo)準(zhǔn)Scikit-learn 使用官網(wǎng): 專課: sklearn API建模數(shù)據(jù)處理Missing value數(shù)據(jù)歸一化/標(biāo)準(zhǔn)化Logistic regression如何使用validation data一般使用grid-search進(jìn)行參數(shù)搜索

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論