定量變量統(tǒng)計描述_第1頁
定量變量統(tǒng)計描述_第2頁
定量變量統(tǒng)計描述_第3頁
定量變量統(tǒng)計描述_第4頁
定量變量統(tǒng)計描述_第5頁
已閱讀5頁,還剩95頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、關(guān)于定量變量的統(tǒng)計描述第一張,PPT共一百頁,創(chuàng)作于2022年6月定量變量的統(tǒng)計描述統(tǒng)計圖表統(tǒng)計指標(biāo):集中趨勢指標(biāo)離散趨勢指標(biāo) 利用統(tǒng)計表對數(shù)據(jù)進行概括,用統(tǒng)計圖對分布形態(tài)及分布間的關(guān)系做直觀的表達,用于描述定量資料的統(tǒng)計指標(biāo)的意義與計算。第二張,PPT共一百頁,創(chuàng)作于2022年6月一、頻率分布表與頻率分布圖 (Frequency / Frequency distribution)二、描述平均水平統(tǒng)計指標(biāo) (Description of central tendency) 【教學(xué)內(nèi)容】三、描述變異程度統(tǒng)計指標(biāo) (Description of tendency of dispersion) 第三

2、張,PPT共一百頁,創(chuàng)作于2022年6月四、描述分布形態(tài)統(tǒng)計指標(biāo) (Description of distribution )五、統(tǒng)計表與統(tǒng)計圖 (statistical table, statistic chart) 【教學(xué)內(nèi)容】 第四張,PPT共一百頁,創(chuàng)作于2022年6月變 量統(tǒng)計學(xué) 衛(wèi)生統(tǒng)計學(xué) 研究內(nèi)容定性變量定量變量統(tǒng)計描述統(tǒng)計推斷隨機性現(xiàn)象概率論數(shù)理統(tǒng)計第五張,PPT共一百頁,創(chuàng)作于2022年6月統(tǒng)計描述:從資料中獲取信息最基本的方法 把握資料基本的特征 為統(tǒng)計分析打下基礎(chǔ)第六張,PPT共一百頁,創(chuàng)作于2022年6月表2-2 120名18-35歲健康男性居民血清鐵含量(umol/L

3、)7.428.6523.0221.6121.3121.469.9722.7314.9420.1821.6223.0720.388.417.3229.6419.6921.6923.917.4519.0820.5224.1423.7718.3623.0424.2224.1321.5311.0918.8918.2623.2917.6715.3818.6114.2717.422.5517.5516.117.9820.132114.5619.8919.8217.4814.8918.3719.517.0818.1226.0211.3413.8110.2515.9415.8318.5424.5219.262

4、6.1316.9918.8918.4620.8717.5113.1211.7517.421.3617.1413.7712.520.420.319.3823.1112.6723.0224.3625.6119.5314.7714.3724.7512.7317.2519.0916.7917.1919.3219.5919.1215.3121.7519.4715.5110.8627.8121.6516.3220.7522.1113.1717.5519.2612.6518.4819.8323.1219.2219.2216.7227.911.7424.6614.1816.52第七張,PPT共一百頁,創(chuàng)作于2

5、022年6月目的:描述該組18-35歲健康男性居民血清鐵含量的分布規(guī)律。問題1.該組居民血清鐵含量平均值多少?問題4. 用表/圖表示血清鐵分布?問題2.血清鐵含量范圍?最高多少?最低多少?問題3.血清鐵含量主要集中在哪個范圍?集中趨勢頻數(shù)表頻數(shù)分布圖離散趨勢第八張,PPT共一百頁,創(chuàng)作于2022年6月【教學(xué)要求】 了解頻數(shù)分布表的編制方法及應(yīng)用 掌握數(shù)值變量資料的平均水平、變 異程度常用統(tǒng)計描述指標(biāo),及各自 的應(yīng)用。第九張,PPT共一百頁,創(chuàng)作于2022年6月第一節(jié) 頻數(shù)與頻數(shù)分布 頻數(shù)(frequency):對一個隨機變量做重復(fù)觀察,其中某變量值出現(xiàn)的次數(shù)。 頻數(shù)分布表(frequency

6、distribution table):將各變量值及其相應(yīng)的頻數(shù)列成表格的形式。 例2-2 抽樣調(diào)查某地120名18歲35歲健康男性居民血清鐵含量(mol/L) ,試編制頻數(shù)分布表。頻數(shù)表的編制:一、連續(xù)型定量變量的頻數(shù)分布第十張,PPT共一百頁,創(chuàng)作于2022年6月(二)連續(xù)型變量頻數(shù)表的編制方法:求全距列表劃記步驟:寫組段定組距第十一張,PPT共一百頁,創(chuàng)作于2022年6月 求全距(Range,簡記R ):是一組資料中最大值(Xmax)與最小值(Xmin)之差,亦稱極差。全距( R)= Xmax - Xmin =29.64 7.42 = 22.22( umol/L )7.428.6523.

7、0221.6121.3121.469.9722.7314.9420.1821.6223.0720.388.417.3229.6419.6921.6923.917.4519.0820.5224.1423.7718.3623.0424.2224.1321.5311.0918.8918.2623.2917.6715.3818.6114.2717.422.5517.5516.117.9820.132114.5619.8919.8217.4814.8918.3719.517.0818.1226.0211.3413.8110.2515.9415.8318.5424.5219.2626.1316.9918.

8、8918.4620.8717.5113.1211.7517.421.3617.1413.7712.520.420.319.3823.1112.6723.0224.3625.6119.5314.7714.3724.7512.7317.2519.0916.7917.1919.3219.5919.1215.3121.7519.4715.5110.8627.8121.6516.3220.7522.1113.1717.5519.2612.6518.4819.8323.1219.2219.2216.7227.911.7424.6614.1816.52第十二張,PPT共一百頁,創(chuàng)作于2022年6月2. 定組

9、距:將全距分為若干段,稱為組段。組與組之間的距離,稱為組距;用小寫i 表示。原則:(1)“組段”數(shù)一般為8-15個;(2)“組距”一般為R/10取整;(3)為計算方便根據(jù)組距采取取整數(shù)方法 本例題:組距(i)=全距/ 預(yù)分組段= 22.22 /10=2.222( umol/L )第十三張,PPT共一百頁,創(chuàng)作于2022年6月3.寫組段:即將全距分為若干段的過程。原則:(1)第一組段要包括Xmin,最末組段包括 Xmax ; (2)每組段均用下限值加 “ ”表示,最終組段同時注明上下限。 注意:各組段不能重疊,每一組段均為半開半閉區(qū)間。4. 列表劃記:根據(jù)預(yù)定的組段和組距,用劃記的方法整理原始資

10、料。第十四張,PPT共一百頁,創(chuàng)作于2022年6月 表2-3 120名18-35歲健康男性居民血清鐵含量的頻數(shù)分布表 6 8 10 12 14 16 18 20 22 24 26 2830 合計一上正一正上正正丅正正正正正正正正正丅正正正上正正丅正上止一13681220271812841組段劃記頻數(shù)120第十五張,PPT共一百頁,創(chuàng)作于2022年6月表2.2 120名18-35歲健康男性居民血清鐵含量(umol/L)頻數(shù)表組段 頻數(shù) 頻率% 累計頻數(shù) 累計頻率%6 1 0.83 1 0.83 8 3 2.50 4 3.3310 6 5.00 10 8.3312 8 6.67 18 15.001

11、4 12 10.00 30 25.0016 20 16.67 50 41.6718 27 22.50 77 64.17 20 18 15.00 95 79.1722 12 10.00 107 89.17 24 8 6.67 115 95.83 26 4 3.33 119 99.172830 1 0.83 120 100.00合計 120 100.0第十六張,PPT共一百頁,創(chuàng)作于2022年6月特點:中間高、兩側(cè)逐漸下降、左右基本對稱的分布-直方圖(直條間連續(xù)),用于表達連續(xù)型變量的頻數(shù)分布。頻數(shù)直方圖(frequency distribution figure) :根據(jù)頻數(shù)分布表,以變量值為橫

12、坐標(biāo),頻數(shù)為縱坐標(biāo),繪制的直方圖。第十七張,PPT共一百頁,創(chuàng)作于2022年6月 的頻數(shù)是7, 頻率為7.3%,進行3次檢查 的頻數(shù)是11, 頻率 為 11.5%,進行5次以上檢查的 頻數(shù)是12,頻率為12.5%。 進行0次檢查的頻數(shù)是4,其頻率為4.2%, 進行1次 檢查 0,3,2,0,1,5,6,3,2,4,1,0,6,5,1,3,3,4,7二、離散型定量變量的頻數(shù)分布例2-1(P11)第十八張,PPT共一百頁,創(chuàng)作于2022年6月離散型變量的頻數(shù)分布表每一個組段就是一個固定的取值第十九張,PPT共一百頁,創(chuàng)作于2022年6月 離散型變量的頻數(shù)分布圖 直條圖 橫坐標(biāo)為產(chǎn)前檢查次數(shù);縱坐標(biāo)

13、為 頻率,即產(chǎn)前檢查K次的婦女在被統(tǒng)計婦女中所占的比例%。圖中等寬矩形長條的高度與相應(yīng)檢查次數(shù)的頻率呈正比。第二十張,PPT共一百頁,創(chuàng)作于2022年6月 頻率:各組的頻數(shù)除以總例數(shù) n 所得的比值。頻率描述了各組頻數(shù)在全體中所占的比重,各組頻率之和等于100%。 累計頻數(shù):本組段的頻數(shù)與以前各組段的頻數(shù)相加; 累計頻率:每組段的累計頻數(shù)除以總例數(shù)。第二十一張,PPT共一百頁,創(chuàng)作于2022年6月 三、 頻數(shù)分布的兩個特征 集中趨勢:血清鐵含量向中央部分集中,即中等含量者居多,集中在18 這個組段,這種現(xiàn)象為集中趨勢。離散趨勢:從中央部分到兩側(cè)的頻數(shù)分布逐漸減少,而且血清鐵含量的值參差不齊,最

14、低的接近6 ,最高的接近30 ,這種現(xiàn)象稱為離散趨勢。由于同質(zhì)性,所有實測值趨向同一數(shù)值的趨勢稱為集中趨勢。離散趨勢或變異程度是指觀察值之間參差不齊的程度。第二十二張,PPT共一百頁,創(chuàng)作于2022年6月血清膽固醇組段(1)劃記(2)頻數(shù)(3) 2.30 2.60 2.90 3.20 3.50 3.80 4.10 4.40 4.70 5.00 5.30 5.60 一 下 正一 正下 正正正丅 正正正正 正正正丅 正正丅 正止 正 丅 一 1368172017129521表2-2 某地101名正常成年女子血清總膽固醇的頻數(shù)表合計 140從中央部分到兩側(cè)的頻數(shù)分布逐漸減少、血清膽固醇的的值參差不齊

15、離散趨勢血清膽固醇值向中央部分集中,即中等含量者居多集中趨勢第二十三張,PPT共一百頁,創(chuàng)作于2022年6月頻數(shù)分布 四、頻數(shù)分布的類型對稱分布型:指集中位置在正中,左右兩側(cè)頻數(shù)分布大體對稱。偏態(tài)分布型:指集中位置偏向一側(cè),頻數(shù)分布不對稱。偏態(tài)分布正偏態(tài)分布:集中位置偏向數(shù)值小的一側(cè)。負偏態(tài)分布:集中位置偏向數(shù)值大的一側(cè)。第二十四張,PPT共一百頁,創(chuàng)作于2022年6月第二十五張,PPT共一百頁,創(chuàng)作于2022年6月第二十六張,PPT共一百頁,創(chuàng)作于2022年6月第二十七張,PPT共一百頁,創(chuàng)作于2022年6月(三)頻數(shù)表的用途:1.揭示變量的分布特征 圖3.1 某市100名8歲男童身高(cm

16、)的頻數(shù)分布離散趨勢 (tendency of dispersion)集中趨勢與離散趨勢結(jié)合能全面反映頻數(shù)的分布特征集中趨勢 (central tendency) 身高(cm)頻數(shù)分布特征第二十八張,PPT共一百頁,創(chuàng)作于2022年6月2.揭示變量的分布類型 頻數(shù)分布偏態(tài)分布正偏 負偏集中部位在中部,兩端漸少,左右兩側(cè)的基本對稱,為對稱(正態(tài))分布。 對稱分布集中部位偏于較小值一側(cè)(左側(cè)),較大值方向漸減少,為正偏態(tài)分布。集中部位偏于較大值一側(cè)(右側(cè)),較小值方向漸減少,為負偏態(tài)分布。第二十九張,PPT共一百頁,創(chuàng)作于2022年6月4. 便于進一步計算統(tǒng)計指標(biāo)和統(tǒng)計分析3.便于發(fā)現(xiàn)某些離群值或

17、極端值。 圖3.1 某市101名8歲男童身高(cm)的頻數(shù)分布身高(cm)頻數(shù)第三十張,PPT共一百頁,創(chuàng)作于2022年6月一.集中趨勢統(tǒng)計指標(biāo):反映總體內(nèi)部的同質(zhì)。 二.離散度統(tǒng)計指標(biāo):反映總體內(nèi)個體間的變異。 三.分布形態(tài)統(tǒng)計指標(biāo):反映高峰的形態(tài)。第二節(jié) 描述平均水平的統(tǒng)計指標(biāo)第三十一張,PPT共一百頁,創(chuàng)作于2022年6月平均數(shù):描述一組同質(zhì)計量資料的集中趨勢;反映一組觀察值的平均水平。常用的平均數(shù)有算術(shù)均數(shù),幾何均數(shù)和中位數(shù)。(一)算術(shù)均數(shù)(mean):簡稱均數(shù),總體均數(shù)用希臘字母表示,樣本均數(shù)用拉丁字母 表示。 1. 計算方法 1) 直接法:適用于樣本例數(shù)n較少的資料。 其中X1,X

18、2Xn為各變量值,n為樣本例數(shù)。第三十二張,PPT共一百頁,創(chuàng)作于2022年6月 2) 加權(quán)法:適用于變量值較多的資料。 K=1、2、3.,fk為第k組段的頻數(shù),X0k 為第k組段的組中值, 組中值=(本組段下限+下組段下限)/2。權(quán)即頻數(shù)多,權(quán)數(shù)大,作用也大,頻數(shù)小,權(quán)數(shù)小,作用也小。第三十三張,PPT共一百頁,創(chuàng)作于2022年6月10,10,10,15,1510有3個,權(quán)數(shù)為3,計算均數(shù)時起3/5的作用頻數(shù)多,權(quán)數(shù)大,作用大15有2個,權(quán)數(shù)為2,計算均數(shù)時起2/5的作用頻數(shù)小,權(quán)數(shù)小,作用小第三十四張,PPT共一百頁,創(chuàng)作于2022年6月 例2-3 某年某醫(yī)院8名女性晚期肺癌患者紅細胞計數(shù)

19、(1012/L)為4.20,6.43,2.08,3.45,2.26,4.04,5.42,3.38。試求其算術(shù)均數(shù)。 例2-4求例2-2中某地120名18-35歲健康男性居民的血清鐵含量的均數(shù)。第三十五張,PPT共一百頁,創(chuàng)作于2022年6月120名18-35歲健康男性居民血清鐵含量均數(shù)、標(biāo)準差計算表(加權(quán)法) 組段 頻數(shù)(f) 組中值(X0) fX 0 (1) (2) (3) (4)=(2)(3) (5)=(3)(4) 6 8 10 12 14 16 18 20 22 24 26 2830 合計 120(f) 2228(fX0) 43640( )136812202712108417276610

20、41803405133782762001082979111315171921232527294924372613522700578097477938634850002916841第三十六張,PPT共一百頁,創(chuàng)作于2022年6月2. 算數(shù)均數(shù)的應(yīng)用 它最適用于對稱分布資料,尤其是 正態(tài)分布資料。因為這時均數(shù)位于分布的中心,最能反映資料的集中趨勢。第三十七張,PPT共一百頁,創(chuàng)作于2022年6月( 二)幾何均數(shù)(geometric mean): (幾何均數(shù)也稱為倍數(shù)均數(shù),用G表示) 1. 幾何均數(shù)的計算方法 1) 直接法:適用于樣本例數(shù)n較少的資料。 將n個觀察值X1,X2,X3Xn的乘積開n次方

21、對數(shù)形式:G=lg-1(lgX1+lgX2+lgX3+lgXn)/n =lg-1(lgX/n)第三十八張,PPT共一百頁,創(chuàng)作于2022年6月 例2-5 7名慢性遷延性肝炎患者的HBsAg滴度資料為1:16,1:32,1:32,1:64,1:64,1:128,1:512。求其平均效價。7份HBsAg的平均滴度為1:64第三十九張,PPT共一百頁,創(chuàng)作于2022年6月2) 加權(quán)法:適用于樣本例數(shù)n較多的資料。 X1,X2Xn 為各組段的滴度或滴度倒數(shù)。f1,f2fn分別為各組段的頻數(shù)。第四十張,PPT共一百頁,創(chuàng)作于2022年6月 例2-6 52例慢性肝炎患者的HBsAg滴度數(shù)據(jù)見表,求其平均滴

22、度。52例慢性肝炎患者的HBsAg滴度的幾何均數(shù)為1:119.74705第四十一張,PPT共一百頁,創(chuàng)作于2022年6月 二)幾何均數(shù)應(yīng)用的注意事項: 1)幾何均數(shù)常用于等比資料或?qū)?shù)正態(tài)分布資料。 2)觀察值中不能有0。 3)觀察值中不能同時有正值和負值。第四十二張,PPT共一百頁,創(chuàng)作于2022年6月練習(xí)題:1.有8份血清的抗體效價分別為: 1:5, 1:10, 1:20, 1:40, 1:80, 1:160, 1:320, 1:640 求平均抗體效價。2.有50人的血清抗體效價,分別為:5人1:10, 9人1:20, 20人1:40, 10人1:80, 6人1:160 求平均抗體效價。第

23、四十三張,PPT共一百頁,創(chuàng)作于2022年6月 中位數(shù)(median,M):將一組變量值從小到大按順序排列,位次居中的那個變量值就是中位數(shù)。 (三)中位數(shù)和百分位數(shù) 百分位數(shù)(percentile, Px):指把數(shù)據(jù)從小到大排列后位于第X%位置的數(shù)值。有n個觀察值X1,X2Xn,把他們由小到大按順序排列成X1X2X3Xn,將這n個觀察值平均的分為100等份,對應(yīng)于每一等份的數(shù)值就是一個百分位數(shù),對應(yīng)于前面X%個位置的數(shù)值稱為第X百分位數(shù),用Px表示。 一個百分位數(shù)Px將總體或樣本的全部觀察值分為兩部分,理論上,在不包括Px的全部數(shù)據(jù)中有X%的觀察值比它小,有(100-X)%的觀察值比它大。第四

24、十四張,PPT共一百頁,創(chuàng)作于2022年6月 1. 中位數(shù)和百分位數(shù)的計算 1) 直接法:適用于樣本例數(shù)n較少的資料。 將觀察值按大小順序排列,當(dāng)n為奇數(shù)時,中間那個數(shù)就是中位數(shù)。當(dāng)n為偶數(shù)時,中間兩個數(shù)的平均數(shù)就是中位數(shù)。 例2-7 某藥廠觀察9只小鼠口服高山紅景天醇提物(RSAE)后在乏氧條件下的生存時間(分鐘)如下:49.1,60.8,63.3,63.6,63.6,65.6,65.8,68.6,69.0 n為奇數(shù),M=63.6 (cm)第四十五張,PPT共一百頁,創(chuàng)作于2022年6月練習(xí):1.某病患者9名,發(fā)病潛伏期分別為順序 2、3、3、3、4、5、6、9、16d,求中位數(shù)。2.某病患

25、者8名,發(fā)病潛伏期從小到大排分別為5、6、8、9、11、11、13、16d,求平均潛伏期。第四十六張,PPT共一百頁,創(chuàng)作于2022年6月 2)頻數(shù)表法計算中位數(shù)和百分位數(shù):適用于樣本例數(shù)n較多的資料。 累計頻數(shù):本組段的頻數(shù)與以前各組段的頻數(shù)相加; 累計頻率:每組段的累計頻數(shù)除以總例數(shù)。 公式為 L為百分位數(shù)所在組段的下限,i為該組段的組距,fx為該組段的頻數(shù),fL為百分位數(shù)所在組段的前一組段的累計頻數(shù),n為總例數(shù)。第四十七張,PPT共一百頁,創(chuàng)作于2022年6月例2-8 50例鏈球菌咽峽炎患者潛伏期(h),計算其中位數(shù)。 組段 頻數(shù) 累計頻數(shù) 累計頻率 (%) 12 24 36 48 60

26、 72 84 96 108120 合計 50 1 1 27 8 16 11 19 3811 30 607 37 745 42 844 46 922 48 962 50 100 第四十八張,PPT共一百頁,創(chuàng)作于2022年6月求P25,P75。第四十九張,PPT共一百頁,創(chuàng)作于2022年6月 2. 中位數(shù)和百分位數(shù)的應(yīng)用 1)中位數(shù)常用于描述偏態(tài)分布資料的集中趨勢,反映位次居中的觀察值的平均水平。在對稱分布的資料中,中位數(shù)和均數(shù)在理論上是相同的。 2)百分位數(shù)可用于確定醫(yī)學(xué)參考值范圍(詳后)。 3)分布在中部的百分位數(shù)相當(dāng)穩(wěn)定,具有較好的代表性,但靠近兩端的百分位數(shù),只有在樣本例數(shù)足夠多時才比較

27、穩(wěn)定。第五十張,PPT共一百頁,創(chuàng)作于2022年6月 應(yīng)用平均數(shù)的注意事項 1.平均數(shù)的計算和應(yīng)用必須具備同質(zhì)基礎(chǔ),必須先合理分組。 不同質(zhì)的事物要分別求平均數(shù),以便分析比較。 2.根據(jù)資料的分布選用適當(dāng)?shù)钠骄鶖?shù)。對稱分布資料,尤其是正態(tài)分布資料,宜用均數(shù),也可用中位數(shù),而偏態(tài)分布資料則中位數(shù)的代表性較好,對數(shù)正態(tài)分布及等比級數(shù)資料宜用幾何均數(shù)。第五十一張,PPT共一百頁,創(chuàng)作于2022年6月4. 眾數(shù)(mode) 是一組觀察值中出現(xiàn)頻率最高的那個觀察值;若為分組資料,眾數(shù)則是出現(xiàn)頻率最高的那個組段。第五十二張,PPT共一百頁,創(chuàng)作于2022年6月例 有16例高血壓病人的發(fā)病年齡(歲)為:42

28、,45,48,51,52,54,55,55,58,58,58,58,61,61,62,62,試求眾數(shù)?出現(xiàn)頻數(shù)最多的數(shù)值為58,故眾數(shù)為58。58歲為高血壓的高發(fā)年齡。眾數(shù)從概念上易于理解。但沒有充分利用樣本觀察值的全部信息。第五十三張,PPT共一百頁,創(chuàng)作于2022年6月 例. 對甲乙兩名高血壓患者連續(xù)觀察5天,測得的收縮壓(mmHg)結(jié)果如下: 可以看出:兩患者收縮壓的均數(shù)十分接近, 但甲患者的血壓波動較大,而乙患者相對穩(wěn)定。 患者第1天第2天第3天第4天第5天均數(shù)甲患者 162145178142186162.6乙患者 164160163159166162.4 第三節(jié)、描述變異程度的統(tǒng)計指

29、標(biāo)第五十四張,PPT共一百頁,創(chuàng)作于2022年6月 只用平均數(shù)描述資料的弊病甲組 26 29 30 31 34 均數(shù)30kg乙組 24 27 30 33 36 均數(shù)30kg丙組 26 28 30 32 34 均數(shù)30kg丙乙甲三組兒童體重的離散程度第五十五張,PPT共一百頁,創(chuàng)作于2022年6月例2-11 試觀察3組數(shù)據(jù)的離散情況。A組 26 28 30 32 34 B組 24 27 30 33 36 C組 26 29 30 31 34為了全面的把握數(shù)據(jù)的分布特征,通常,描述一組觀察值,除需要表示其平均水平外,還要說明它的離散或變異的情況。 第五十六張,PPT共一百頁,創(chuàng)作于2022年6月離散

30、趨勢:用于描述一組數(shù)值變量觀察值之間參差不齊的程度,即變異程度。包括極差(Range, R)四分位數(shù)間距(Quartile, Q)方差(Variance, )標(biāo)準差(Standard deviation,S)變異系數(shù)(Coefficient of variation,CV)第五十七張,PPT共一百頁,創(chuàng)作于2022年6月1. 極差(range ,R) 也稱為全距,用R表示,即一組資料中,最大值與最小值之差。 缺點:1)除了最大、最小值外,不能反映組內(nèi)其他數(shù)據(jù)的變異度。2)樣本例數(shù)越多,抽到較大或較小變量值的可能性越大,因而極差可能越大。3)即使樣本含量相同,極差也不夠穩(wěn)定。 第五十八張,PPT

31、共一百頁,創(chuàng)作于2022年6月 1、適用條件:常用于描述單峰對稱分布小樣本 資料的變異程度,或用于初步 了解資料的變異程度。 2、意義:對于計量單位相同的變量,極差越 大,觀察值的離散程度越大。 3、優(yōu)點:用以說明數(shù)據(jù)分布的離散程度,方法 簡單明了;理論上可用于各種分布資 料 第五十九張,PPT共一百頁,創(chuàng)作于2022年6月4、缺點(1)除了最大值與最小值外,不能反映組內(nèi)其它觀察值的變異度;穩(wěn)定性差。(2)樣本較大時,抽到較大值與較小值的可能性也較大,因而樣本極差也較大,故樣本含量相差較大時,不宜用極差來比較分布的離散度。(3)當(dāng)兩組樣本例數(shù)相差懸殊時,不宜選用極差作為比較兩組變異程度的指標(biāo)

32、第六十張,PPT共一百頁,創(chuàng)作于2022年6月 2. 四分位數(shù)間距(quartile range ,Q) 簡記為Q,可看為特定的百分位數(shù)。P25表示全部觀察值中有25%(1/4)的觀察值比它小,記為下四分位數(shù)QL, P75表示全部觀察值中有75%的觀察值比它小,記為上四分位數(shù)QU。 Q適用于各種類型的連續(xù)型變量,特別是偏態(tài)分布的資料。第六十一張,PPT共一百頁,創(chuàng)作于2022年6月 例 2-8第六十二張,PPT共一百頁,創(chuàng)作于2022年6月 四分位數(shù)間距的特點:適用于描述偏態(tài)分布、一端或兩端無確切數(shù)值、分布不明確資料的離散程度。 四分位數(shù)間距越大,數(shù)據(jù)分布的變異度越大;反之,變異度越小。與中位

33、數(shù)一起描述偏態(tài)分布資料的分布特征。作為描述數(shù)據(jù)分布離散程度的指標(biāo),比極差穩(wěn)定,但仍未考慮到每個數(shù)據(jù)的大小,未考慮全部觀察值的變異度,在統(tǒng)計分析中應(yīng)用的不夠普遍。第六十三張,PPT共一百頁,創(chuàng)作于2022年6月3. 方差( Variance)公式及來源:極差和四分位間距未考慮全部觀察值的變異度全面地考慮每個變量值的離散情況為了衡量每個變量值的變異;先選擇一個數(shù)值作為比較標(biāo)準;誰合適呢?均數(shù)最有代表性。第六十四張,PPT共一百頁,創(chuàng)作于2022年6月應(yīng)考慮總體中每個變量值x與總體均數(shù)之差;x-稱為離均差。分析:為解決這個問題,給每項離均差平方后再相加,稱離均差平方和, 即(x-)2。但每個變量值與

34、均數(shù)相減所得到得差值有正有負相消,即(x-x)=0;這樣就不能反映變異的大小? ? 第六十五張,PPT共一百頁,創(chuàng)作于2022年6月還有沒有問題沒考慮到? 離均差平方和的大小,除與變異度有關(guān)外,還與變量值的個數(shù)(多少)有關(guān),為在變量值個數(shù)不等時進行比較,還要除以變量值的個數(shù),所得值即為總體方差,用2表示:2 =總體方差:NX-2)(m樣本方差: 以樣本均數(shù)代表,用樣本例數(shù)n代表總體例數(shù)N,所得方差稱樣本方差,用S2表示:nXXS-=22)(第六十六張,PPT共一百頁,創(chuàng)作于2022年6月公式中存在的問題? 根據(jù)以上公式研究的結(jié)果表明求得的樣本方差總是偏?。粸榻鉀Q此問題,英國統(tǒng)計學(xué)家通過實驗,用

35、n-1代替可消除誤差。 n-1 稱為自由度( degree of freedom ),用希臘字母nju:表示,表示隨機變量能夠自由取值的個數(shù)。n-1XXS-=22)(樣本方差的公式調(diào)整為:第六十七張,PPT共一百頁,創(chuàng)作于2022年6月 (n-1)稱為自由度( degree of freedom ),用希臘字母nju:表示,表示隨機變量能夠自由取值的個數(shù)。 分析: 如有一組四個(n=4)數(shù)據(jù)的樣本,受到 = 5的條件限制,在自由確定4、2、5三個數(shù)據(jù)后,第四個數(shù)據(jù)只能是9,否則 5。因而這里的自由度= n-1= 4-1=3。推而廣之,任何統(tǒng)計量的 自由度=n-限制條件的個數(shù)。第六十八張,PPT

36、共一百頁,創(chuàng)作于2022年6月 方差:分總體方差 ,樣本方差S2計算:意義:克服了值的不足,考慮了每個變量值的離散情況并消除了的影響。優(yōu)點:全面地考慮每個變量值的離散情況缺點:其單位是原度量單位的平方??傮w方差樣本方差第六十九張,PPT共一百頁,創(chuàng)作于2022年6月例:計算三組數(shù)據(jù)的方差 A組:24,27,30,33,36; B組: 26,28,30,32,34; C組:26,29,30,31,34。第七十張,PPT共一百頁,創(chuàng)作于2022年6月 方差的特點適用條件:對稱分布資料,特別是正態(tài)分布或近似正態(tài)分布資料。意義:方差越大,數(shù)據(jù)間的變異越大優(yōu)點:利用了每個數(shù)據(jù)的信息,是常用的 描述數(shù)據(jù)分

37、布離散程度指標(biāo)不足:度量衡單位發(fā)生了改變,不便于實際應(yīng)用。為此,更常用的是標(biāo)準差。第七十一張,PPT共一百頁,創(chuàng)作于2022年6月4.標(biāo)準差(Standard deviation,SD或S)方差的單位是原度量單位的平方,不便使用。將方差公式展開,并開方,即得到另一個重要的離散趨勢的指標(biāo),即標(biāo)準差,簡寫為S。公式來源:總體標(biāo)準差:1()2-=nXXs樣本標(biāo)準差:第七十二張,PPT共一百頁,創(chuàng)作于2022年6月1. 直接法:適用于n較小的資料求例題中A組數(shù)據(jù)的標(biāo)準差。2. 加權(quán)法:適用于n較大的資料第七十三張,PPT共一百頁,創(chuàng)作于2022年6月120名成年男子血清鐵含量均數(shù)、標(biāo)準差計算表(加權(quán)法

38、) 組段 頻數(shù)(f) 組中值(X0) fX 0 fX02 (1) (2) (3) (4)=(2)(3) (5)=(3)(4) 6 8 10 12 14 16 18 20 22 24 26 2830 合計 120(f) 2228(fX0) 43640(fX02)13681220271210841727661041803405133782762001082979111315171921232527294924372613522700578097477938634850002916841第七十四張,PPT共一百頁,創(chuàng)作于2022年6月3. 標(biāo)準差的應(yīng)用: 1) 表示變量分布的離散程度。 2) 結(jié)合均

39、數(shù)計算變異系數(shù)。 3) 結(jié)合樣本含量計算標(biāo)準誤。 4)結(jié)合均數(shù)描述正態(tài)分布特征。第七十五張,PPT共一百頁,創(chuàng)作于2022年6月問題的引入例: 某校一年級男大學(xué)生身高樣本均數(shù)為167.4cm,標(biāo)準差為5.8cm;體重均數(shù)為57.3kg,標(biāo)準差為6.4kg。 試比較其變異程度的大???第七十六張,PPT共一百頁,創(chuàng)作于2022年6月5. 變異系數(shù)(coefficient of variation ,CV) 公式為:常用于:1) 比較度量衡單位不同的多組資料的變異度。 例2-15 某年通過10省調(diào)查得知,農(nóng)村剛滿周歲的女童體重均數(shù)為8.42kg ,標(biāo)準差為0.98kg ;身高均數(shù)為72.4cm,標(biāo)準

40、差為3.0cm,試比較二者變異度。體重 CV=0.98/8.42100%=11.64%身高 CV=3.0/72.4100%=4.14%第七十七張,PPT共一百頁,創(chuàng)作于2022年6月2). 比較均數(shù)相差懸殊的幾組資料的變異度。 運用變異系數(shù)的注意事項:1.有關(guān)的事物才能比較 。2.均數(shù)小于標(biāo)準差時要考慮其實際運用價值 。 某地不同年齡段男子身高的變異度 年齡組 人數(shù) 均數(shù) 標(biāo)準差 變異系數(shù)(%) 3-3.5歲 100 96.1 3.1 3.23 30-35歲 100 170.2 4.0 2.35 第七十八張,PPT共一百頁,創(chuàng)作于2022年6月變異系數(shù)的特點:與前面的四種離散程度指標(biāo)相比,變異

41、系數(shù)有以下兩個不同之處:1、它描述的不是數(shù)據(jù)分布的絕對離散程度,而是相對離散程度;不屬于描述性統(tǒng)計指標(biāo),是一個用于比較的統(tǒng)計指標(biāo)。2、它不像極差、四分位數(shù)間距、方差、標(biāo)準差那樣具有取值單位。它沒有取值單位第七十九張,PPT共一百頁,創(chuàng)作于2022年6月 偏度系數(shù)(coefficient of skewness,SKEW)理論上,總體偏度系數(shù)為0時,分布是對稱分布;取正值時,分布為正偏峰;取負值時,分布為負偏峰。 第四節(jié)、描述分布形態(tài)的特征數(shù)第八十張,PPT共一百頁,創(chuàng)作于2022年6月 峰度系數(shù)(coefficient of kurtosis,KURT)理論上,正態(tài)分布的總體峰度系數(shù)為0;取負

42、值時,其分布較正態(tài)分布的峰平闊;取正值時,其分布較正態(tài)分布的峰尖峭。第八十一張,PPT共一百頁,創(chuàng)作于2022年6月SKEW=-0.19393, KURT=-0.01783第八十二張,PPT共一百頁,創(chuàng)作于2022年6月 小結(jié)反映集中趨勢的指標(biāo): 算術(shù)均數(shù):對稱分布 幾何均數(shù):測定值按等比級數(shù)變化 中位數(shù):不規(guī)則分布反映離散度的指標(biāo): 標(biāo)準差(方差):對稱分布 變異系數(shù): 對稱分布 四分位數(shù)間距: 不規(guī)則分布 極差(全距): 不規(guī)則分布反映峰型的指標(biāo): 偏度系數(shù):測定高峰的位置, 分布的對稱性. 峰度系數(shù) :測定峰度的高低。 集中趨勢的強度.第八十三張,PPT共一百頁,創(chuàng)作于2022年6月平均

43、數(shù)與標(biāo)準差(方差)聯(lián)合應(yīng)用 中位數(shù)與四分位數(shù)間距(極差)聯(lián)合應(yīng)用第八十四張,PPT共一百頁,創(chuàng)作于2022年6月 統(tǒng)計表(statistical table)和統(tǒng)計圖(statistical chart)是統(tǒng)計描述的重要工具。醫(yī)學(xué)科學(xué)研究資料經(jīng)過整理和計算各種必要的統(tǒng)計指標(biāo)后,所得結(jié)果除了用適當(dāng)文字說明以外,常用統(tǒng)計表和統(tǒng)計圖表達分析結(jié)果。統(tǒng)計圖表可以對于數(shù)據(jù)進行概括、對比或做直觀的表達。統(tǒng)計表和統(tǒng)計圖不僅便于閱讀,而且便于分析比較。 第五節(jié) 統(tǒng)計圖表和統(tǒng)計圖第八十五張,PPT共一百頁,創(chuàng)作于2022年6月1概念:指在科技報告中,常將統(tǒng)計分析的事物及其指標(biāo)用表格列出,以反映事物的內(nèi)在規(guī)律性和關(guān)

44、聯(lián)性。2作用:1)避免繁雜的文字敘述2)便于計算3)便于事物間的比較分析 一、統(tǒng)計表第八十六張,PPT共一百頁,創(chuàng)作于2022年6月3. 統(tǒng)計表的結(jié)構(gòu) 從外形上看,統(tǒng)計表由標(biāo)題、標(biāo)目(包括橫標(biāo)目、縱標(biāo)目)、線條、數(shù)字及必要的文字說明和備注5部分構(gòu)成。其基本格式如表1: 第八十七張,PPT共一百頁,創(chuàng)作于2022年6月 1)標(biāo)題:概括說明表的中心內(nèi)容,要求用詞簡練、確切。必要時注明資料的時間、地點,寫在表的上端中央。 注意:防止標(biāo)題過于簡略或過于繁雜,有的 甚至不寫標(biāo)題。 2)標(biāo)目:要求文字簡明,有單位的標(biāo)目要 注明單位。橫標(biāo)目位于表的左側(cè),說明各橫行數(shù)字的含義。縱標(biāo)目位于表的右側(cè),向下說明各縱行數(shù)字的含義。 注意:防止標(biāo)目過多,層次不清。 第八十八張,PPT共一百頁,創(chuàng)作于2022年6月第八十九張,PPT共一百頁,創(chuàng)作于2022年6月 3線條:只需要頂線、底線及縱標(biāo)目下面與合計上面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論