新北師大版八年級上冊數學期末復習(全冊知識點梳理及常考題型鞏固練習)(基礎版)(家教、補習)_第1頁
新北師大版八年級上冊數學期末復習(全冊知識點梳理及??碱}型鞏固練習)(基礎版)(家教、補習)_第2頁
新北師大版八年級上冊數學期末復習(全冊知識點梳理及常考題型鞏固練習)(基礎版)(家教、補習)_第3頁
新北師大版八年級上冊數學期末復習(全冊知識點梳理及??碱}型鞏固練習)(基礎版)(家教、補習)_第4頁
新北師大版八年級上冊數學期末復習(全冊知識點梳理及??碱}型鞏固練習)(基礎版)(家教、補習)_第5頁
已閱讀5頁,還剩583頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、北師大版八年級上冊數學重難點突破知識點梳理及重點題型鞏固練習勾股定理(基礎)【學習目標】1掌握勾股定理的內容,了解勾股定理的多種證明方法,體驗數形結合的思想;2能夠運用勾股定理求解三角形中相關的邊長(只限于常用的數);3通過對勾股定理的探索解決簡單的實際問題,進一步運用方程思想解決問題【要點梳理】要點一、勾股定理直角三角形兩條直角邊的平方和等于斜邊的平方如果直角三角形的兩直角邊長分別為,斜邊長為,那么要點詮釋:(1)勾股定理揭示了一個直角三角形三邊之間的數量關系 (2)利用勾股定理,當設定一條直角邊長為未知數后,根據題目已知的線段長可以建立方程求解,這樣就將數與形有機地結合起來,達到了解決問題

2、的目的(3)理解勾股定理的一些變式:, 要點二、勾股定理的證明方法一:將四個全等的直角三角形拼成如圖(1)所示的正方形 圖(1)中,所以 方法二:將四個全等的直角三角形拼成如圖(2)所示的正方形 圖(2)中,所以方法三:如圖(3)所示,將兩個直角三角形拼成直角梯形 ,所以要點三、勾股定理的作用已知直角三角形的任意兩條邊長,求第三邊;用于解決帶有平方關系的證明問題;3 與勾股定理有關的面積計算;4勾股定理在實際生活中的應用【典型例題】類型一、勾股定理的直接應用1、在ABC中,C90,A、B、C的對邊分別為、(1)若5,12,求;(2)若26,24,求【思路點撥】利用勾股定理來求未知邊長【答案與解

3、析】解:(1)因為ABC中,C90,5,12,所以所以13(2)因為ABC中,C90,26,24, 所以所以10【總結升華】已知直角三角形的兩邊長,求第三邊長,關鍵是先弄清楚所求邊是直角邊還是斜邊,再決定用勾股原式還是變式舉一反三:【變式】在ABC中,C90,A、B、C的對邊分別為、(1)已知6,10,求;(2)已知,32,求、【答案】解:(1) C90,6,10, , 8(2)設, C90,32, 即解得8 ,類型二、與勾股定理有關的證明2、(2015豐臺區(qū)一模)閱讀下面的材料勾股定理神秘而美妙,它的證法多種多樣,下面是教材中介紹的一種拼圖證明勾股定理的方法先做四個全等的直角三角形,設它們的

4、兩條直角邊分別為a,b,斜邊為c,然后按圖1的方法將它們擺成正方形由圖1可以得到(a+b)2=4,整理,得a2+2ab+b2=2ab+c2所以a2+b2=c2如果把圖1中的四個全等的直角三角形擺成圖2所示的正方形,請你參照上述證明勾股定理的方法,完成下面的填空:由圖2可以得到 ,整理,得 ,所以 【答案與解析】證明:S大正方形=c2,S大正方形=4S+S小正方形=4ab+(ba)2,c2=4ab+(ba)2,整理,得2ab+b22ab+a2=c2,c2=a2+b2故答案是:;2ab+b22ab+a2=c2;a2+b2=c2【總結升華】本題考查利用圖形面積的關系證明勾股定理,解題關鍵是利用三角形

5、和正方形邊長的關系進行組合圖形舉一反三:【變式】如圖,在ABC中,C90,D為BC邊的中點,DEAB于E,則AE2-BE2等于( )AAC2BBD2CBC2DDE2【答案】連接AD構造直角三角形,得,選A類型三、與勾股定理有關的線段長3、如圖,長方形紙片ABCD中,已知AD8,折疊紙片使AB邊與對角線AC重合,點B落在點F 處,折痕為AE,且EF3,則AB的長為( )A3 B4 C5 D6【答案】D;【解析】解:設AB,則AF, ABE折疊后的圖形為AFE, ABEAFEBEEF,ECBCBE835,在RtEFC中,由勾股定理解得FC4,在RtABC中,解得【總結升華】折疊問題包括“全等形”、

6、“勾股定理”兩大問題,最后通過勾股定理求解類型四、與勾股定理有關的面積計算4、如圖,直線l上有三個正方形a,b,c,若a,c的面積分別為5和11,則b的面積為()A6 B5 C11 D16【思路點撥】本題主要考察了全等三角形與勾股定理的綜合應用,由b是正方形,可求ABCCDE由勾股定理可求b的面積=a的面積+c的面積【答案】D【解析】解:ACB+ECD=90,DEC+ECD=90,ACB=DEC,在ABC和CDE中,ABCCDEBC=DEb的面積為5+11=16,故選D【總結升華】此題巧妙的運用了勾股定理解決了面積問題,考查了對勾股定理幾何意義的理解能力,根據三角形全等找出相等的量是解答此題的

7、關鍵舉一反三:【變式】(2015東莞模擬)如圖,所有三角形都是直角三角形,所有四邊形都是正方形,已知S=4,S=9,S=8,S=10,則S=()A.25 B.31 C.32 D.40【答案】解:如圖,由題意得:AB2=S1+S2=13,AC2=S3+S4=18,BC2=AB2+AC2=31,S=BC2=31,故選B類型五、利用勾股定理解決實際問題5、(2016春淄博期中)有一個小朋友拿著一根竹竿要通過一個長方形的門,如果把竹竿豎放就比門高出1尺,斜放就恰好等于門的對角線,已知門寬4尺,求竹竿高與門高【思路點撥】根據題中所給的條件可知,竹竿斜放就恰好等于門的對角線長,可與門的寬和高構成直角三角形

8、,運用勾股定理可求出門高【答案與解析】解:設門高為x尺,則竹竿長為(x+1)尺,根據勾股定理可得:x2+42=(x+1)2,即x2+16=x2+2x+1,解得:x=7.5,竹竿高=7.5+1=8.5(尺)答:門高7.5尺,竹竿高8.5尺【總結升華】本題考查勾股定理的運用,正確運用勾股定理,將數學思想運用到實際問題中是解答本題的關鍵舉一反三:【變式】如圖所示,一旗桿在離地面5處斷裂,旗桿頂部落在離底部12處,則旗桿折斷前有多高?【答案】解:因為旗桿是垂直于地面的,所以C90,BC5,AC12, () BCAB51318() 旗桿折斷前的高度為18北師大版八年級上冊數學重難點突破知識點梳理及重點題

9、型鞏固練習【鞏固練習】一.選擇題1. 下列說法正確的是( )A數軸上任一點表示唯一的有理數B數軸上任一點表示唯一的無理數C兩個無理數之和一定是無理數D數軸上任意兩點之間都有無數個點2下列說法中,正確的是( )A0.4的算術平方根是0.2 B16的平方根是4 C的立方根是4 D 的立方根是3.(2015八步區(qū)一模)下列運算正確的是()A B=3C()2=3 D+=4. ,則的值是( )A. B. C. D. 5. 若式子有意義,則的取值范圍是 ( ).A. B. C. D. 以上答案都不對. 6. 下列說法中錯誤的是( )A.中的可以是正數、負數或零. B.中的不可能是負數. C. 數的平方根有

10、兩個. D.數的立方根有一個.7. 數軸上A,B兩點表示實數,則下列選擇正確的是( )A. B. C. D.8.(2016河北)關于的敘述,錯誤的是()A是有理數B面積為12的正方形邊長是C=2D在數軸上可以找到表示的點二.填空題9. 若的整數部分是,則其小數部分用表示為 10當 時,有意義.11.(2015慶陽)若2xmny2與3x4y2m+n是同類項,則m3n的立方根是 12. 已知最簡二次根式是同類二次根式,則的值為_.13. 的平方根是 . 14.若,則 .15. 比較大?。?, , 16.(2016黃岡)計算:|1|= .三.解答題17(2015新疆模擬)計算:()2+|2|18.已

11、知:,求的值.19. 已知:表示、兩個實數的點在數軸上的位置如圖所示,請你化簡20. 閱讀題:閱讀下面的文字,解答問題.大家知道是無理數,而無理數是無限不循環(huán)小數,因此的小數部分我們不可能全部寫出來,于是小明用1表示的小數部分,你同意小明的表示方法嗎?事實上,小明的表示方法是有道理的,因為的整數部分是1,將這個數減去其整數部分,差就是小數部分.請解答:已知:10,其中是整數,且,求的相反數.【答案與解析】一.選擇題1. 【答案】D;【解析】數軸上任一點都表示唯一的實數.2. 【答案】D; 【解析】;16的平方根是4;的立方根是2.3【答案】C;【解析】解:A、原式=32=6,所以A選項錯誤;B

12、、原式=|3|=3,所以B選項錯誤;C、原式=3,所以C選項正確;D、與不能合并,所以D選項錯誤故選C4.【答案】B; 【解析】.5. 【答案】A;6. 【答案】C;【解析】數不確定正負,負數沒有平方根.7. 【答案】C;8. 【答案】A; 【解析】A、是無理數,原來的說法錯誤,符合題意;B、面積為12的正方形邊長是,原來的說法正確,不符合題意;C、=2,原來的說法正確,不符合題意;D、在數軸上可以找到表示的點,原來的說法正確,不符合題意,故選:A二.填空題9. 【答案】;10.【答案】為任意實數 ; 【解析】任何實數都有立方根.11.【答案】2; 【解析】解:若2xmny2與3x4y2m+n

13、是同類項,解方程得:m3n=23(2)=88的立方根是2故答案為:212【答案】2; 【解析】因為是同類二次根式,所以,解方程組得.13.【答案】 ;【解析】 7,7的平方根是. 14.【答案】; 【解析】被開方數的小數點向左移動2位,平方根向左移動1位.15.【答案】;16.【答案】1; 【解析】解:|1|=12=1三.解答題17.【解析】 解:原式=22+2=18.【解析】解:原式.19.【解析】解:020.【解析】解:111012 11,1011 .北師大版八年級上冊數學重難點突破知識點梳理及重點題型鞏固練習平面直角坐標系(基礎)【學習目標】1.了解確定位置的方法,用有序數對或用方向和距

14、離來確定物體的位置.2.理解平面直角坐標系概念,能正確畫出平面直角坐標系.2.能在平面直角坐標系中,根據坐標描出點的位置、由點的位置寫出它的坐標.3.會用確定坐標、描點、連線的方法在直角坐標系中作出簡單圖形. 【要點梳理】要點一、確定位置的方法有序數對:把有順序的兩個數a與b組成的數對,叫做有序數對,記作(a,b)要點詮釋: 有序,即兩個數的位置不能隨意交換,(a,b)與(b,a)順序不同,含義就不同,如電影院的座位是6排7號,可以寫成(6,7)的形式,而(7,6)則表示7排6號可以用有序數對確定物體的位置,也可以用方向和距離來確定物體的位置(或稱方位).要點二、平面直角坐標系與點的坐標的概念

15、1.平面直角坐標系在平面內畫兩條互相垂直、原點重合的數軸就組成平面直角坐標系.水平的數軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數軸稱為y軸或縱軸,取向上方向為正方向,兩坐標軸的交點為平面直角坐標系的原點(如圖1).要點詮釋:平面直角坐標系是由兩條互相垂直且有公共原點的數軸組成的.2.點的坐標 平面內任意一點P,過點P分別向x軸、y軸作垂線,垂足在x軸、y軸上對應的數a,b分別叫做點P的橫坐標、縱坐標,有序數對(a,b)叫做點P的坐標,記作:P(a,b),如圖2.要點詮釋:(1)表示點的坐標時,約定橫坐標寫在前,縱坐標寫在后,中間用“,”隔開(2)點P(a,b)中,|a|表示點到y(tǒng)軸的距離

16、;|b|表示點到x軸的距離.(3) 對于坐標平面內任意一點都有唯一的一對有序數對(x,y)和它對應,反過來對于任意一對有序數對,在坐標平面內都有唯一的一點與它對應,也就是說,坐標平面內的點與有序數對是一一對應的要點三、坐標平面1. 象限建立了平面直角坐標系以后,坐標平面就被兩條坐標軸分成如圖所示的、四個部分,分別叫做第一象限、第二象限、第三象限和第四象限,如下圖要點詮釋:(1)坐標軸x軸與y軸上的點(包括原點)不屬于任何象限(2)按方位來說:第一象限在坐標平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2.各個象限內和坐標軸上點的坐標的符號特征要點詮釋:(1)對于坐標平面內

17、任意一個點,不在這四個象限內,就在坐標軸上.(2)坐標軸上點的坐標特征:x軸上的點的縱坐標為0;y軸上的點的橫坐標為0(3)根據點的坐標的符號情況可以判斷點在坐標平面上的大概位置;反之,根據點在坐標平面上的位置也可以判斷點的坐標的符號情況【典型例題】類型一、確定物體的位置1如果將一張“13排10號”的電影票簡記為(13,10),那么(10,13)表示的電影票是 排 號.【思路點撥】在平面上,一個數據不能確定平面上點的位置須用有序數對來表示平面內點的位置【答案】10,13.【解析】由條件可知:前面的數表示排數,后面的數表示號數.【總結升華】在表示時,先要“約定”順序,一旦順序“約定”,兩個數的位

18、置就不能隨意交換,(a,b)與(b,a)順序不同,含義就不同2如圖,雷達探測器測得六個目標A、B、C、D、E、F出現按照規(guī)定的目標表示方法,目標C、F的位置表示為C(6,120)、F(5,210)按照此方法在表示目標A、B、D、E的位置時,其中表示不正確的是()AA(5,30) BB(2,90) CD(4,240) DE(3,60)【思路點撥】按已知可得,表示一個點,橫坐標是自內向外的環(huán)數,縱坐標是所在列的度數,分別判斷各選項即可得解【答案】D【解析】由題意可知A、B、D、E的坐標可表示為:A(5,30),故A正確;B(2,90),故B正確;D(4,240),故C正確;E(3,300),故D錯

19、誤【總結升華】本題考查了學生的閱讀理解能力,由已知條件正確確定點的位置是解決本題的關鍵類型二、平面直角坐標系與點的坐標的概念3.如圖,寫出點A、B、C、D各點的坐標.【思路點撥】要確定點的坐標,要先確定點所在的象限,再看點到坐標軸的距離【答案與解析】解:由點A向x軸作垂線,得A點的橫坐標是2,再由點A向y軸作垂線,得A點的縱坐標是3,則點A的坐標是(2,3),同理可得點B、C、D的坐標所以,各點的坐標:A(2,3),B(3,2),C(2,1),D(1,2)【總結升華】平面直角坐標系內任意一點到x軸的距離是這點縱坐標的絕對值,到y(tǒng)軸的距離是這點橫坐標的絕對值舉一反三:【變式】(2015春臨沂期末

20、)多多和爸爸、媽媽周末到動物園游玩,回到家后,她利用平面直角坐標系畫出了動物園的景區(qū)地圖,如圖所示可是她忘記了在圖中標出原點和x軸、y軸只知道馬場的坐標為(3,3),你能幫她建立平面直角坐標系并求出其他各景點的坐標?【答案】解:建立坐標系如圖:南門(0,0),獅子(4,5),飛禽(3,4)兩棲動物(4,1)4.(2015春榮昌縣期末)如圖,四邊形OABC各個頂點的坐標分別是O(0,0),A(3,0),B(5,2),C(2,3)求這個四邊形的面積【思路點撥】分別過C點和B點作x軸和y軸的平行線,如圖,然后利用S四邊形ABCO=S矩形OHEFSABHSCBESOCF進行計算【答案與解析】解:分別過

21、C點和B點作x軸和y軸的平行線,如圖,則E(5,3),所以S四邊形ABCO=S矩形OHEFSABHSCBESOCF=53221332=【總結升華】本題考查了坐標與圖形性質:利用點的坐標計算相應線段的長和判斷線段與坐標軸的位置關系;會運用面積的和差計算不規(guī)則圖形的面積舉一反三:【變式】在平面直角坐標系中,O為坐標原點,已知:A(3,2),B(5,0),則AOB的面積為 【答案】5.類型三、坐標平面及點的特征5. (2016春宜陽縣期中)已知點P(2m+4,m1)試分別根據下列條件,求出點P的坐標(1)點P的縱坐標比橫坐標大3;(2)點P在過A(2,3)點,且與x軸平行的直線上【思路點撥】(1)根

22、據橫縱坐標的大小關系得出m1(2m+4)=3,即可得出m的值,進而得出P點坐標;(2)根據平行于x軸點的坐標性質得出m1=3,進而得出m的值,進而得出P點坐標【答案與解析】解:(1)點P(2m+4,m1),點P的縱坐標比橫坐標大3,m1(2m+4)=3,解得:m=8,2m+4=12,m1=9,點P的坐標為:(12,9);(2)點P在過A(2,3)點,且與x軸平行的直線上,m1=3,解得:m=2,2m+4=0,P點坐標為:(0,3)【總結升華】此題主要考查了坐標與圖形的性質,根據已知得出關于m的等式是解題關鍵舉一反三:【變式】在直角坐標系中,點P(x,y)在第二象限且P到x軸,y軸的距離分別為2

23、,5,則P的坐標是_;若去掉點P在第二象限這個條件,那么P的坐標是_. 【答案】(5,2);(5,2),(5,2),(5,2),(5,2).北師大版八年級上冊數學重難點突破知識點梳理及重點題型鞏固練習【鞏固練習】一、選擇題1為確定一個平面上點的位置,可用的數據個數為( ). A1個 B2個 C3個 D4個2下列說法正確的是( ). A(2,3)和(3,2)表示的位置相同 B(2,3)和(3,2)是表示不同位置的兩個有序數對 C(2,2)和(2,2)表示兩個不同的位置 D(m,n)和(n,m)表示的位置不同3.(2016大連)在平面直角坐標系中,點M(1,5)所在的象限是( ). A第一象限 B

24、第二象限 C第三象限 D第四象限4若點P(m,n)在第三象限,則點Q(m,n)在( ). A第一象限 B第二象限 C第三象限 D第四象限5知點P(m3,2m4)在y軸上,那么點P的坐標是( ). A(2,0) B(0,2) C(1,0) D(0,1)6(2015北京)如圖是利用平面直角坐標系畫出的故宮博物院的主要建筑分布圖,若這個坐標系分別以正東、正北方向為x軸、y軸的正方向,表示太和門的點的坐標為(0,1),表示九龍壁的點的坐標為(4,1),則表示下列宮殿的點的坐標正確的是()A景仁宮(4,2)B養(yǎng)心殿(2,3)C保和殿(1,0) D武英殿(3.5,4)二、填空題7已知有序數對(2x1,53

25、y)表示出的點為(5,2),則x_,y_8某賓館一大樓客房是按一定規(guī)律編號的,例如房間403號是指該大樓中第4層第3個房間, 則房間815號是指第_層第_個房間;第6層第1個房間編號為_9. 點P(3,4)到x軸的距離是_,到y(tǒng)軸的距離是_10.指出下列各點所在象限或坐標軸: 點A(5,3)在_,點B(2,1)在_,點C(0,3)在_,點D(4,0)在_,點E(0,0)在_11.(2016黔南州)在平面直角坐標系中,對于平面內任一點(a,b),若規(guī)定以下三種變換:(a,b)=(a,b);(a,b)=(a,b);(a,b)=(a,b),按照以上變換例如:(1,2)=(1,2),則(3,4)等于1

26、2(2015安溪縣模擬)若點(3x,x1)在第二象限,則x的取值范圍是 三、解答題13在圖中建立適當的平面直角坐標系,使A、B兩點的坐標分別為(4,1)和(1,4),寫出點C、D的坐標,并指出它們所在的象限14(2014春夏津縣校級期中)根據要求解答下列問題:設M(a,b)為平面直角坐標系中的點(1)當a0,b0時,點M位于第幾象限?(2)當ab0時,點M位于第幾象限?(3)當a為任意實數,且b0時,點M位于何處?15. 已知A,B,C,D的坐標依次為(4,0),(0,3),(4,0),(0,3),在平面直角坐標系中描出各點,并求四邊形ABCD的面積【答案與解析】一、選擇題1. 【答案】B.2

27、. 【答案】B.3. 【答案】B; 【解析】四個象限的點的坐標符號分別是(+,+),(-,+),(-,-),(+,-)4. 【答案】A; 【解析】因為點P(m,n)在第三象限,所以m,n均為負,則它們的相反數均為正5. 【答案】B; 【解析】m30,m3,將其代入得:2m42,P(0,2)6. 【答案】B; 【解析】解:根據表示太和門的點的坐標為(0,1),表示九龍壁的點的坐標為(4,1),可得:原點是中和殿,所以可得景仁宮(2,4),養(yǎng)心殿(2,3),保和殿(0,1),武英殿(3.5,3),故選B.二、填空題7. 【答案】3,1; 【解析】由2x15,得x3;由53y2,得y18. 【答案】

28、8, 15, 601;9. 【答案】4, 3; 【解析】到x軸的距離為:44,到y(tǒng)軸的距離為:33.10【答案】第四象限,第三象限,y軸的負半軸上,x軸的正半軸上,坐標原點.11.【答案】(3,4) 【解析】解:(3,4)=(3,4)=(3,4)12.【答案】x3; 【解析】解:點(3x,x1)在第二象限,解不等式得,x3,解不等式得,x1,所以不等式組的解集是x3故答案為:x3三、解答題13.【解析】解:建立平面直角坐標系如圖:得C(1,2)、D(2,1)由圖可知,點C在第三象限,點D在第一象限.14.【解析】解:M(a,b)為平面直角坐標系中的點(1)當a0,b0時,點M位于第四象限;(2

29、)當ab0時,即a,b同號,故點M位于第一、三象限;(3)當a為任意實數,且b0時,點M位于第三、四象限和縱軸的負半軸15.【解析】解:描點如下: . 北師大版八年級上冊數學重難點突破知識點梳理及重點題型鞏固練習坐標平面內圖形的軸對稱和平移(基礎)【學習目標】能在同一直角坐標系中,感受圖形經軸對稱后點的坐標的變化.掌握左右、上下平移點的坐標規(guī)律.【要點梳理】要點一、關于坐標軸對稱點的坐標特征1.關于坐標軸對稱的點的坐標特征P(a,b)關于x軸對稱的點的坐標為 (a,b);P(a,b)關于y軸對稱的點的坐標為 (a,b);P(a,b)關于原點對稱的點的坐標為 (a,b)2.象限的角平分線上點坐標

30、的特征第一、三象限角平分線上點的橫、縱坐標相等,可表示為(a,a);第二、四象限角平分線上點的橫、縱坐標互為相反數,可表示為(a,a)3.平行于坐標軸的直線上的點平行于x軸的直線上的點的縱坐標相同;平行于y軸的直線上的點的橫坐標相同.要點二、用坐標表示平移1.點的平移:在平面直角坐標系中,將點(x,y)向右或向左平移a個單位長度,可以得到對應點(xa,y)或(xa,y);將點(x,y)向上或向下平移b個單位長度,可以得到對應點(x,yb)或(x,yb)要點詮釋:(1)在坐標系內,左右平移的點的坐標規(guī)律:右加左減;(2)在坐標系內,上下平移的點的坐標規(guī)律:上加下減;(3)在坐標系內,平移的點的坐

31、標規(guī)律:沿x軸平移縱坐標不變,沿y軸平移橫坐標不變2.圖形的平移:在平面直角坐標系內,如果把一個圖形各個點的橫坐標都加上(或減去)一個正數a,相應的新圖形就是把原圖形向右(或向左)平移a個單位長度;如果把它各個點的縱坐標都加上(或減去)一個正數a,相應的新圖形就是把原圖形向上(或向下)平移a個單位長度要點詮釋:(1)平移是圖形的整體位置的移動,圖形上各點都發(fā)生相同性質的變化,因此圖形的平移問題可以轉化為點的平移問題來解決(2)平移只改變圖形的位置,圖形的大小和形狀不發(fā)生變化.【典型例題】類型一、用坐標表示軸對稱1已知點P(3,1)關于y軸的對稱點Q的坐標是(ab,1b),則的值為_.【思路點撥

32、】根據關于y軸對稱點的坐標特點:橫坐標互為相反數,縱坐標不變可得ab3,1b1,再解方程可得a、b的值,進而算出的值【答案】25【解析】解:點P(3,1)關于y軸的對稱點Q的坐標是(ab,1b),ab3,1b1,解得:b2,a5,25,【總結升華】此題主要考查了關于y軸對稱點的坐標特點,關鍵是掌握點的坐標的變化規(guī)律舉一反三:【變式】點(3,2)關于x軸的對稱點為()A(3,2) B(3,2) C(3,2) D(2,3)【答案】A 2.已知點A(3,2)與點B(x,y)在同一條平行于y軸的直線上,且點B到x軸的距離等于3,求點B的坐標【思路點撥】由“點A(3,2)與點B(x,y)在同一條平行于y

33、軸的直線上”可得點B的橫坐標;由“點B到x軸的距離等于3”可得B的縱坐標為3或3,即可確定B的坐標【答案與解析】解:如圖, 點B與點A在同一條平行于y軸的直線上, 點B與點A的橫坐標相同, x3 點B到x軸的距離為3, y3或y3 點B的坐標是(3,3)或(3,3)【總結升華】在點B的橫坐標為3的條件下,點B到x軸的距離等于3,則點B可能在第二象限,也可能在第三象限,所以要分類討論,防止漏解舉一反三:【變式1】若x軸上的點P到y(tǒng)軸的距離為3,則點P的坐標為( ). A(3,0) B(3,0)或(3,0)C(0,3) D(0,3)或(0,3)【答案】B.【變式2】若點P (a ,b)在第二象限,

34、則:(1)點P1(a ,b)在第 象限;(2)點P2(a ,b)在第 象限;(3)點P3(a ,b)在第 象限;(4)點P4( b ,a )在第 象限. 【答案】(1)三;(2)一;(3)四;(4)四.類型二、用坐標表示平移3.(2015海安縣校級二模)在平面直角坐標系中,將點A(2,3)向右平移2個單位長度,再向下平移6個單位長度得點B,則點B的坐標是 【思路點撥】根據向右平移橫坐標加,向下平移縱坐標減列式計算即可得解【答案】(0,3)【解析】解:將點A(2,3)向右平移2個單位長度,再向下平移6個單位長度得點B,點B的坐標是(2+2,36),即(0,3)故答案為:(0,3)【總結升華】本題

35、考查了坐標與圖形變化平移,平移中點的變化規(guī)律是:橫坐標右移加,左移減;縱坐標上移加,下移減舉一反三:【變式1】已知:兩點A(4,2)、B(2,6),(1)線段AB的中點C坐標是 ;(2)若將線段AB沿x軸向右平移5個單位,得到線段A1B1,則A1點的坐標是 ,B1點的坐標是 (3)若將線段AB沿y軸向下平移3個單位,得到線段A2B2,則A2點的坐標是 ,B2點的坐標是 【答案】(1)(3, 2); (2)(1,2),(3,6); (3)(4,1),(2,9).【變式2】點P(2,5)向右平移 2個單位長度,向下平移 4個單位長度,變?yōu)镻(0,1)【答案】2、44. (2016春江西期末)如圖中

36、,A、B兩點的坐標分別為(2,3)、(4,1),(1)求ABO的面積(2)把ABO向下平移3個單位后得到一個新三角形OAB,求OAB的3個頂點的坐標【思路點撥】(1)把ABO放在一個矩形里面,用矩形COED的面積ACO的面積ABD的面積BEO的面積即可算出ABO的面積;(2)根據點的坐標平移的規(guī)律,用A、B、O的坐標的縱坐標分別減去3即可【答案與解析】解:(1)如圖所示:SABO=34324122=5;(2)A(2,0),B(4,2),O(0,3)【總結升華】此題主要考查了點的平移,以及求三角形的面積,當計算一個三角形的面積時,可以把它放在一個矩形里,然后用矩形的面積減去周圍三角形的面積舉一反

37、三:【變式】(2014秋宣漢縣期末)如圖所示,ABC三個頂點A,B,C的坐標分別為A(1,2),B(4,3),C(3,1)把A1B1C1向右平移4個單位長度,再向下平移3個單位長度,恰好得到ABC,試寫出A1B1C1三個頂點的坐標【答案】解:A1(3,5),B1(0,6),C1(1,4)北師大版八年級上冊數學重難點突破知識點梳理及重點題型鞏固練習【鞏固練習】一、選擇題1.如圖,在平面直角坐標系xOy中,點P(3,5)關于y軸的對稱點的坐標為()A(3,5) B(3,5) C(35) D(5,3)2.平面直角坐標系中,點P的坐標為(5,3),則點P關于x軸的對稱點的坐標是()A(5,3) B(5

38、,3) C(3,5) D(3,5)3如圖,COB是由AOB經過某種變換后得到的圖形,請同學們觀察A與C兩點的坐標之間的關系,若AOB內任意一點P的坐標是(a,b),則它的對應點Q的坐標是( ) A(a,b) B(a,b) C(a,b) D(a,b)4(2016貴港)在平面直角坐標系中,將點A(1,-2)向上平移3個單位長度,再向左平移2個單位長度,得到點A,則點A的坐標是()A(-1,1)B(-1,-2)C(-1,2) D(1,2)5在平面直角坐標系中,將某個圖象上各點的橫坐標都加上3,得到一個新圖形,那么新圖形與原圖形相比( ) A向右平移3個單位 B向左平移3個單位 C向上平移3個單位 D

39、向下平移3個單位6.(2015春趙縣期末)線段CD是由線段AB平移得到的點A(1,4)的對應點為C(4,7),則點B(4,1)的對應點D的坐標為()A(2,9) B(5,3) C(1,2) D(9,4)二、填空題7.點A(3,0)關于y軸的對稱點的坐標是_.8.點P(2,1)關于x軸對稱的點P的坐標是_.9.在平面直角坐標系中,點A(1,2)關于y軸對稱的點為B(a,2),則a_.10. 通過平移把點A(1,3)移到點A1(3,0),按同樣的平移方式把點P(2,3)移到點P1,則點P1的坐標是_11(2016廣安)將點A(1,3)沿x軸向左平移3個單位長度,再沿y軸向上平移5個單位長度后得到的

40、點A的坐標為 12(2014秋嘉魚縣校級月考)點P(1,2)關于直線y=1對稱的點的坐標是 ;關于直線x=1對稱的坐標是 三、解答題13.已知點P(a1,2a1)關于x軸的對稱點在第一象限,求a的取值范圍14.如圖,正方形ABCD關于x軸、y軸均成軸對稱,若這個正方形的面積為100,請分別寫出點A、B、C、D的坐標15(2014春環(huán)翠區(qū)校級期末)如圖,回答下列問題:(1)將ABC沿x軸向左移一個單位長度,向上移2個單位長度,則A1的坐標為 ,B1的坐標為 ,C1的坐標為 (2)若ABC與A2B2C2關于x軸對稱,則A2的坐標為 ,B2的坐標為 ,C2的坐標為 【答案與解析】一、選擇題1. 【答

41、案】B;2. 【答案】B; 3. 【答案】D; 【解析】觀察圖形可得,COB與AOB關于x軸對稱,則 P (a,b)關于x軸對稱點坐標為(a,b)4. 【答案】A; 【解析】將點A(1,-2)向上平移3個單位長度,再向左平移2個單位長度,即坐標變?yōu)椋?-2,-2+3),即點A的坐標為(-1,1)故選A5.【答案】A 6. 【答案】C; 【解析】解:平移中,對應點的對應坐標的差相等,設D的坐標為(x,y);根據題意:有4(1)=x(4);74=y(1),解可得:x=1,y=2;故D的坐標為(1,2)故選:C二、填空題7. 【答案】(3,0);8. 【答案】(2,1);9. 【答案】 1; 【解析

42、】點A(1,2)關于y軸對稱的點為B(a,2),a110【答案】(4,6); 【解析】從點A到A1點的橫坐標從1到3,說明是向右移動了312,縱坐標從3到0,說明是向上移動了0(3)3,那點P的橫坐標加2,縱坐標加3即可得到點P1則點P1的坐標是(4,6)11.【答案】(2,2).12.【答案】(1,0),(1,2); 【解析】解:如圖所示:點P(1,2)關于直線y=1對稱的點的坐標是(1,0);關于直線x=1對稱的坐標是:(1,2)故答案為:(1,0),(1,2)三、解答題13.【解析】解:依題意得p點在第四象限,解得:1a,即a的取值范圍是1a14.【解析】解:設正方形的邊長為a則100a

43、10A(5,5),B(5,5),C(5,5),D(5,5)15.【解析】解:(1)A(3,0),B(2,4),C(0,1),將ABC沿x軸向左移一個單位長度,向上移2個單位長度,則A1的坐標為(31,0+2),B1的坐標為(21,4+2),C1的坐標為(01,1+2),即:A1的坐標為(2,2),B1的坐標為(3,6),C1的坐標為(1,1),故答案為:(2,2),(3,6),(1,1);(2)若ABC與A2B2C2關于x軸對稱,則A2的坐標為(3,0),B2的坐標為(2,4),C2的坐標為(0,1),故答案為:(3,0),(2,4),(0,1)北師大版八年級上冊數學重難點突破知識點梳理及重點

44、題型鞏固練習平面直角坐標系全章復習與鞏固(基礎)知識講解【學習目標】1. 理解平面直角坐標系及象限的概念,并會在坐標系中根據點的坐標描出點的位置、由點的位置寫出它的坐標;2. 掌握用坐標系表示物體位置的方法及在物體平移變化前后點坐標的變化;3. 通過學習平面直角坐標系的基礎知識,逐步理解平面內的點與有序實數對之間的一一對應關系,進而培養(yǎng)數形結合的數學思想【知識網絡】【要點梳理】要點一、有序數對把一對數按某種特定意義,規(guī)定了順序并放在一起就形成了有序數對,人們在生產生活中經常以有序數對為工具表達一個確定的意思,如某人記錄某個月不確定周期的零散收入,可用(13,2000), (17,190), (

45、21,330),表示,其中前一數表示日期,后一數表示收入,但更多的人們還是用它來進行空間定位,如:(4,5),(20,12),(13,2),用來表示電影院的座位,其中前一數表示排數,后一數表示座位號.要點二、平面直角坐標系 在平面內畫兩條互相垂直、原點重合的數軸就組成平面直角坐標系,如下圖:要點詮釋:(1)坐標平面內的點可以劃分為六個區(qū)域:x軸,y軸、第一象限、第二象限、第三象限、第四象限,這六個區(qū)域中,除了x軸與y軸有一個公共點(原點)外,其他區(qū)域之間均沒有公共點.(2)在平面上建立平面直角坐標系后,坐標平面上的點與有序數對(x,y)之間建立了一一對應關系,這樣就將形與數聯系起來,從而實現了

46、代數問題與幾何問題的轉化.(3)要熟記坐標系中一些特殊點的坐標及特征: x軸上的點縱坐標為零;y軸上的點橫坐標為零 平行于x軸直線上的點橫坐標不相等,縱坐標相等;平行于y軸直線上的點橫坐標相等,縱坐標不相等 關于x軸對稱的點橫坐標相等,縱坐標互為相反數; 關于y軸對稱的點縱坐標相等,橫坐標互為相反數; 關于原點對稱的點橫、縱坐標分別互為相反數 象限角平分線上的點的坐標特征: 一、三象限角平分線上的點橫、縱坐標相等; 二、四象限角平分線上的點橫、縱坐標互為相反數注:反之亦成立(4)理解坐標系中用坐標表示距離的方法和結論: 坐標平面內點P(x,y)到x軸的距離為|y|,到y(tǒng)軸的距離為|x| x軸上

47、兩點A(x1,0)、B(x2,0)的距離為AB=|x1 - x2|; y軸上兩點C(0,y1)、D(0,y2)的距離為CD=|y1 - y2| 平行于x軸的直線上兩點A(x1,y)、B(x2,y)的距離為AB=|x1 - x2|; 平行于y軸的直線上兩點C(x,y1)、D(x,y2)的距離為CD=|y1 - y2|(5)利用坐標系求一些知道關鍵點坐標的幾何圖形的面積:切割、拼補.要點三、坐標方法的簡單應用1用坐標表示地理位置 (1)建立坐標系,選擇一個適當的參照點為原點,確定x軸、y軸的正方向; (2)根據具體問題確定適當的比例尺,在坐標軸上標出單位長度; (3)在坐標平面內畫出這些點,寫出各

48、點的坐標和各個地點的名稱要點詮釋: (1)我們習慣選取向東、向北分別為x軸、y軸的正方向,建立坐標系的關鍵是確定原點的位置 (2)確定比例尺是畫平面示意圖的重要環(huán)節(jié),要結合比例尺來確定坐標軸上的單位長度2用坐標表示平移 (1)點的平移點的平移引起坐標的變化規(guī)律:在平面直角坐標中,將點(x,y)向右(或左)平移a個單位長度,可以得到對應點(x+a,y)(或(x-a,y);將點(x,y)向上(或下)平移b個單位長度,可以得到對應點(x,y+b)(或(x,y-b) 要點詮釋:上述結論反之亦成立,即點的坐標的上述變化引起的點的平移變換 (2)圖形的平移 在平面直角坐標系內,如果把一個圖形各個點的橫坐標

49、都加(或減去)一個正數a,相應的新圖形就是把原圖形向右(或向左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去)一個正數a,相應的新圖形就是把原圖形向上(或向下)平移a個單位長度要點詮釋:平移是圖形的整體運動,某一個點的坐標發(fā)生變化,其他點的坐標也進行了相應的變化,反過來點的坐標發(fā)生了相應的變化,也就意味著點的位置也發(fā)生了變化,其變化規(guī)律遵循:“右加左減,縱不變;上加下減,橫不變”【典型例題】類型一、有序數對1數學家發(fā)明了一個魔術盒,當任意數對(a,b)進入其中時,會得到一個新的數:例如把(3,-2)放入其中,就會有32 +(-2)+18,現將數對(-2,3)放入其中得到數m,再將數對(

50、m,1)放入其中,得到的數是_【思路點撥】解答本題的關鍵是正確理解如何由數對得到新的數,只要按照新定義的數的運算,把數對代入求值即可【答案】66 . 【解析】解:將(-2,3)代入,得(-2)2+3+18, 再將(8,1)代入,得82 +1+166, 故填:66【總結升華】解答此題的關鍵是把實數對(-2,3)放入其中得到實數m,解出m的值,即可求出把(m,1)放入其中得到的數舉一反三:【變式】我們規(guī)定向東和向北方向為正,如向東走4米,再向北走6米,記作(4,6),則向西走5米,再向北走3米,記作_;數對(-2,-6)表示_【答案】 (-5,3);向西走2米,向南走6米.類型二、平面直角坐標系2

51、. (濱州)第三象限內的點P(x,y),滿足|x|5,y29,則點P的坐標為_【思路點撥】點在第三象限,橫坐標0,縱坐標0再根據所給條件即可得到x,y的具體值【答案】(-5,-3).【解析】因為|x|5,y29所以x5,y3,又點P(x,y)在第三象限,所以x0,y0,故點P的坐標為(-5,-3)【總結升華】解決本題的關鍵是記住各象限內點的坐標的符號,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)舉一反三:【變式1】 (樂山)在平面直角坐標系中,點P(-3,4)到x軸的距離為( ) A3 B-3 C4 D-4【答案】C.【變式2】 (長春)如圖所示,小手蓋住的點

52、的坐標可能為( ) A(5,2) B(-6,3) C(-4,-6) D(3,-4)【答案】D.類型三、坐標方法的簡單應用3.(2016春吐魯番市校級期中)如圖,是某校的平面示意圖,已知圖書館、行政樓的坐標分別為(3,2),(2,3)完成以下問題:(1)請根據題意在圖上建立直角坐標系;(2)寫出圖上其他地點的坐標(3)在圖中用點P表示體育館(1,3)的位置【思路點撥】(1)根據圖書館、行政樓的坐標分別為(3,2),(2,3),可以建立合適的平面直角坐標系,從而可以解答本題;(2)根據(1)中的平面直角坐標系可以寫出其它地點的坐標;(3)根據點P(1,3)可以在直角坐標系中表示出來【答案與解析】解

53、:(1)由題意可得,(2)由(1)中的平面直角坐標系可得,校門口的坐標是(1,0),信息樓的坐標是(1,2),綜合樓的坐標是(5,3),實驗樓的坐標是(4,0);(3)在圖中用點P表示體育館(1,3)的位置,如下圖所示,【總結升華】本題考查利用坐標確定位置,解題的關鍵是明確題意,建立相應的平面直角坐標系4.(2015春榮昌縣期末)如圖,四邊形OABC各個頂點的坐標分別是O(0,0),A(3,0),B(5,2),C(2,3)求這個四邊形的面積【思路點撥】分別過C點和B點作x軸和y軸的平行線,如圖,然后利用S四邊形ABCO=S矩形OHEFSABHSCBESOCF進行計算【答案與解析】解:分別過C點

54、和B點作x軸和y軸的平行線,如圖,則E(5,3),所以S四邊形ABCO=S矩形OHEFSABHSCBESOCF=53221332=【總結升華】本題考查了坐標與圖形性質:利用點的坐標計算相應線段的長和判斷線段與坐標軸的位置關系;會運用面積的和差計算不規(guī)則圖形的面積5.ABC三個頂點坐標分別是A(4,3),B(3,1),C(1,2) (1)將ABC向右平移1個單位,再向下平移2個單位,所得A1B1C1的三個頂點坐標分別是什么? (2)將ABC三個頂點的橫坐標都減去5,縱坐標不變,分別得到A2、B2、C2,依次連接A2、B2、C2各點,所得A2B2C2與ABC的大小、形狀和位置上有什么關系? (3)

55、將ABC三個頂點的縱坐標都減去5,橫坐標不變,分別得到A3、B3、C3,依次連接A3、B3、C3各點,所得A3B3C3與ABC的大小、形狀和位置上有什么關系?【答案與解析】解:(1)A1(5,1),B1(4,-1),C1(2,0) (2)A2B2C2與ABC的大小、形狀完全相同,在位置上是把ABC向左平移5個單位得到 (3)A3B3C3與ABC的大小、形狀完全相同,在位置上是把ABC向下移5個單位得到【總結升華】此題揭示了平移的整體性,以及平移前后的坐標關系是一一對應的,在平移中,橫坐標減小等價于向左平移;橫坐標增大等價于向右平移;縱坐標減小等價于向下平移;縱坐標增大等價于向上平移舉一反三:【

56、變式】(2015欽州)在平面直角坐標系中,將點A(x,y)向左平移5個單位長度,再向上平移3個單位長度后與點B(3,2)重合,則點A的坐標是()A(2,5)B(8,5)C(8,1)D(2,1)【答案】D解:在坐標系中,點(3,2)先向右平移5個單位得(2,2),再把(2,2)向下平移3個單位后的坐標為(2,1),則A點的坐標為(2,1)故選:D類型四、綜合應用6. 三角形ABC三個頂點A、B、C的坐標分別為A(2,-1)、B(1,-3)、C(4,-3.5)(1)在直角坐標系中畫出三角形ABC;(2)把三角形A1B1C1向右平移4個單位,再向下平移3個單位,恰好得到三角形ABC,試寫出三角形A1

57、B1C1三個頂點的坐標,并在直角坐標系中描出這些點;(3)求出三角形A1B1C1的面積【思路點撥】(1)建立平面直角坐標系,從中描出A、B、C三點,順次連接即可(2)把三角形A1B1C1向右平移4個單位,再向下平移3個單位,恰好得到三角形ABC,即三角形ABC向上平移3個單位,向左平移4個單位,得到三角形A1B1C1,按照平移中點的變化規(guī)律:橫坐標右移加,左移減;縱坐標上移加,下移減寫出三角形A1B1C1三個頂點的坐標,從坐標系中畫出圖形(3)把A1B1C1補成矩形再把周邊的三角形面積減去,即可求得A1B1C1的面積【答案與解析】解:(1)如圖1,(2)如圖2,A1(-2,2),B1(-3,0

58、),C1(0,-0.5);(3)把A1B1C1補成矩形再把周邊的三角形面積減去,即可求得A1B1C1的面積=32.5-1-2.5-0.75=3.25A1B1C1的面積=3.25【總結升華】本題綜合考查了平面直角坐標系,及平移變換注意平移時,要找到三角形各頂點的對應點是關鍵,然后割補法求出三角形ABC的面積。舉一反三:【變式】如果矩形ABCD的對角線的交點與平面直角坐標系的原點重合,且點A和點C的坐標分別為(-3,2)和(3,2),則矩形的面積為( ) A32 B24 C6 D8【答案】B.北師大版八年級上冊數學重難點突破知識點梳理及重點題型鞏固練習平面直角坐標系全章復習與鞏固(基礎)鞏固練習【

59、鞏固練習】一、選擇題1點P(0,3)在( ).Ax軸的正半軸上 Bx的負半軸上 Cy軸的正半軸上 Dy軸的負半軸上2(2016雅安)已知ABC頂點坐標分別是A(0,6),B(3,3),C(1,0),將ABC平移后頂點A的對應點A1的坐標是(4,10),則點B的對應點B1的坐標為()A(7,1)BB(1,7)C(1,1)D(2,1)3將某圖形的橫坐標減去2,縱坐標保持不變,可將圖形( ).A橫向向右平移2個單位B橫向向左平移2個單位C縱向向右平移2個單位D縱向向左平移2個單位4(2015威海)若點A(a+1,b2)在第二象限,則點B(a,b+1)在()A第一象限B第二象限C.第三象限D.第四象限

60、5點P的坐標為(3a-2,8-2a),若點P到兩坐標軸的距離相等,則a的值是( ). A或4 B-2或6 C或-4 D2或-66. 如圖是被墨跡污染的旅游區(qū)各景點地圖,隱約可見,第一景點的坐標為(0,3),第二景點的坐標為(5,3),景區(qū)車站坐標為(0,0),則車站大約在( ).A點A B點B C點C D點D7若點A(m,n)在第二象限,則點B(|m|,-n)在( ) A第一象限 B第二象限 C第三象限 D第四象限8點P(m+3,m+1)在直角坐標系的x軸上,則P點的坐標為( ) A(0,-2) B(2,0) C(4,0) D(0,-4)二、填空題9.如圖,若點E坐標為(2,1),點F坐標為(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論