交換律1公開(kāi)課教案教學(xué)設(shè)計(jì)_第1頁(yè)
交換律1公開(kāi)課教案教學(xué)設(shè)計(jì)_第2頁(yè)
交換律1公開(kāi)課教案教學(xué)設(shè)計(jì)_第3頁(yè)
交換律1公開(kāi)課教案教學(xué)設(shè)計(jì)_第4頁(yè)
交換律1公開(kāi)課教案教學(xué)設(shè)計(jì)_第5頁(yè)
已閱讀5頁(yè),還剩7頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、“加法、乘法交換律”浙江省徐雙蓮名師網(wǎng)絡(luò)工作室 查軍憲教學(xué)內(nèi)容北師大版數(shù)學(xué)第七冊(cè)一一加法、乘法交換律教學(xué)目標(biāo)經(jīng)歷探索過(guò)程,發(fā)現(xiàn)加法交換律和乘法交換律,理解交換律,并能用字母表示,會(huì)簡(jiǎn) 單應(yīng)用。探究在加法或乘法中,由兩個(gè)數(shù)交換到幾個(gè)數(shù)交換位置,得數(shù)不變。教學(xué)重點(diǎn)通過(guò)學(xué)習(xí),理解加法交換律和乘法交換律的意義,會(huì)簡(jiǎn)單應(yīng)用。教學(xué)難點(diǎn)讓學(xué)生通過(guò)觀察思考、提出猜測(cè)、舉例驗(yàn)證,主動(dòng)探究發(fā)現(xiàn)交換律的特點(diǎn),總結(jié)規(guī)律。 教學(xué)實(shí)錄與評(píng)析課前談話:故事引入師:查老師聽(tīng)說(shuō)四(2)班的同學(xué)非常能干,知識(shí)面很廣,老師想請(qǐng)教你們“朝三暮 四”這個(gè)成語(yǔ)里面有個(gè)小故事,你們知道嗎?那查老師就給大家講一個(gè)“朝三暮四”的故事吧。古時(shí)候

2、有個(gè)人養(yǎng)了很多猴子,為了節(jié)省糧食,有一天他對(duì)猴子們說(shuō):“以后給你們吃 的橡子,每天早上分3個(gè),晚上分4個(gè)?!焙镒觽円宦?tīng),都站了起來(lái),非常生氣,養(yǎng)猴人 看到猴子們不高興了,馬上想了想,對(duì)猴子們說(shuō):“那就改成每天早上分4個(gè),晚上分3 個(gè)吧?!睕](méi)想到猴子們聽(tīng)了就高興得手舞足蹈,非常樂(lè)意的接受了。(邊講邊出示圖片,并板書(shū):3443,3 + 4= 4 + 3 )77師:聽(tīng)了故事,同學(xué)們有什么想法?生1:猴子很笨。生2:養(yǎng)猴人聰明。師:從哪里看出養(yǎng)猴人聰明?生3:原來(lái)3和4這兩個(gè)數(shù)的位置變了,得數(shù)卻不變。師:什么不變?什么變了呢?師:同學(xué)們真聰明,馬上會(huì)從數(shù)學(xué)的角度來(lái)分析朝三暮四,時(shí)間也差不多了。我們開(kāi)

3、始上課。評(píng)析課前采用故事引入,一方面增加對(duì)學(xué)生的了解,另一方面又可以從3+4=4+3這 個(gè)等式引入加法交換律的探究。新課教學(xué) 一、探究“加法交換律”4-作 業(yè) 紙 (1)姓名L我來(lái)舉例驗(yàn)證: TOC o 1-5 h z 我認(rèn)為“在加法中,兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變?!笔牵ǎ?。2.我來(lái)填一填:1949 + 60= () + ()200X6 =()義()a + 300 = () + ()% Xy = () X ()()+65 =()+358義()=9X()()+()=()+()()X()=()x()作 業(yè) 紙 (1)姓名L我來(lái)舉例驗(yàn)證: TOC o 1-5 h z 我認(rèn)為“在加法中,兩個(gè)數(shù)

4、相加,交換加數(shù)的位置,和不變?!笔牵ǎ?。2.我來(lái)填一填:1949 + 60= () + ()200X6 =()義()a + 300 = () + ()% Xy = () X ()()+65 =()+358義()=9X()()+()=()+()()X()=()x()1.提出猜測(cè)同學(xué)們,今天老師和大家就一起來(lái)研究交換律。板書(shū):交換律。師:剛才小故事中,養(yǎng)猴人把朝三暮四變成了朝四暮三。數(shù)學(xué)算式是3+4=4+3。如果是朝二暮五呢?就可以變成(生:朝五暮二)等式就是(2+5=5+2)那朝五暮八呢?等式就是(5 + 8 = 8+5)那朝九暮十呢?等式就是9+10=師:觀察這一組等式,你發(fā)現(xiàn)了什么?生1:兩

5、個(gè)數(shù)換位置,和不變。生2:交換加數(shù)的位置,和不變。師:你們的意思是“在加法中,兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變?!边@個(gè)結(jié)論 是大家從這組等式中發(fā)現(xiàn)的,也僅僅是我們的一個(gè)猜測(cè),(教師隨即將生1給出的結(jié)論中 的“?!备臑椤埃?”)它到底是不是正確的,還要我們進(jìn)行驗(yàn)證。2.舉例驗(yàn)證(1)驗(yàn)證師:你能再舉這樣的一些加法例子來(lái)算一算嗎?(學(xué)生舉例驗(yàn)證)(2)反應(yīng)(師挑選學(xué)生有整數(shù)加法、小數(shù)加法和分?jǐn)?shù)加法的進(jìn)行匯報(bào)。)15+28=28 + 151300+200=200+13000.5+0.8=0.8+0.5- + - = - + -4444師:還有嗎?其他同學(xué)把你舉的例子與同桌交流一下。這樣的等式寫的完

6、嗎?生:寫不完。師:現(xiàn)在認(rèn)為這個(gè)猜測(cè)是正確的請(qǐng)舉手。認(rèn)為這個(gè)猜測(cè)不正確的請(qǐng)舉手。師:咦,一個(gè)都沒(méi)有,同學(xué)們有沒(méi)有找到一個(gè)反例,就是交換兩個(gè)加數(shù)的位置,和變 了?如果找到這樣一個(gè)反例,就說(shuō)明這個(gè)猜測(cè)是錯(cuò)的。(3)小結(jié)師:同學(xué)們,通過(guò)大家的努力,舉例驗(yàn)證了 “在加法中,兩個(gè)數(shù)相加,這兩個(gè)數(shù)可以是 一位數(shù)的,兩位數(shù)的,三位數(shù)的,小數(shù)的,分?jǐn)?shù)的,只要交換兩個(gè)加數(shù)的位置,和不變” 是正確的。這就是加法交換律。同學(xué)們真不錯(cuò)!通過(guò)提出猜測(cè),舉例驗(yàn)證猜測(cè),得出了加法交換律這個(gè)結(jié)論。評(píng)析從一組算式就得出結(jié)論是不全面的,所以教師將剛才學(xué)生得出的結(jié)論改為猜測(cè), 有猜測(cè),就要有驗(yàn)證,請(qǐng)學(xué)生自己再出一些交換加數(shù)位置的題

7、目來(lái)進(jìn)行驗(yàn)證,這樣培養(yǎng)學(xué) 生進(jìn)行驗(yàn)證的意識(shí)和能力。在反應(yīng)時(shí),教師有意挑選學(xué)生舉例中有小數(shù)、分?jǐn)?shù)的加法式子, 使學(xué)生充分認(rèn)識(shí)所有的數(shù)都可以運(yùn)用加法交換律,這樣對(duì)交換律的認(rèn)識(shí)能更全面。4-二、探究“乘法交換律”.提出新的猜測(cè)師:“在加法中,交換兩個(gè)加數(shù)的位置和不變?!睆倪@個(gè)結(jié)論中,你又有什么新的猜測(cè)?生1:減法中,交換兩個(gè)數(shù)的位置,差會(huì)不會(huì)也不變呢?師:哦,你從兩個(gè)數(shù)相加想到了兩個(gè)數(shù)相減。還有別的嗎?生2:乘法中,交換兩個(gè)乘數(shù)的位置積會(huì)不會(huì)也不變?生3:除法中,交換兩個(gè)數(shù)的位置商會(huì)不變嗎?還有嗎?教師根據(jù)學(xué)生提出的猜測(cè),依次投影出示。師:根據(jù)加法交換律,同學(xué)們提出的這三個(gè)猜測(cè),你們想說(shuō)什么嗎?生1

8、:減法是錯(cuò)的。師:你的意思是?生1:減法中交換兩個(gè)數(shù)的位置,差是會(huì)變的。師:能舉個(gè)例子嗎?生:86=2和可是68不夠減。師:我這里有一個(gè)例子,55=55,它們的差是不變的。生:這種例子是兩個(gè)數(shù)一樣的,如果相減的兩個(gè)數(shù)不一樣,差就不一樣了。師:看來(lái),在減法中,兩個(gè)數(shù)相減,交換被減數(shù)和減數(shù)的位置,差有時(shí)會(huì)變,有時(shí)不 變。所以“在減法中,交換被減數(shù)和減數(shù)的位置,差不變?!边@是錯(cuò)的。生2:在除法中,交換被除數(shù)和除數(shù)的位置,商是會(huì)變的。師:你能舉一個(gè)例子嗎?生 2: 304-6 = 5, 6 + 30 不等于 5。生 3: 60 + 3 = 20, 3 + 60 不等于 20。師:像這樣的例子舉得完嗎?

9、這又告訴我們什么?生:“在除法中,交換被除數(shù)和除數(shù)的位置,商不變?!边@是錯(cuò)的。.再次驗(yàn)證師:乘法呢?認(rèn)為對(duì)的舉手。這也只是我們的一個(gè)猜測(cè),到底是不是正確,我們需要 舉例驗(yàn)證。同學(xué)們舉乘法例子進(jìn)行驗(yàn)證。(學(xué)生匯報(bào),教師板書(shū),師生算積共同驗(yàn)證)3X8 = 8X3200X5 = 5X200125X8=8X125師:這樣的例子舉得完嗎?生:舉不完的。師:你能舉出一個(gè)反例嗎?學(xué)生都搖頭表示沒(méi)有反例。師:通過(guò)驗(yàn)證,我們發(fā)現(xiàn)“在乘法中,兩個(gè)數(shù)相乘,交換乘數(shù)的位置積不變。這就是 乘法交換律”(教師引著學(xué)生講并板書(shū))。評(píng)析從剛才得到的加法交換律中提出在減法、乘法、除法中有類似的交換律嗎?教 師引導(dǎo)學(xué)生進(jìn)行新的猜

10、測(cè),通過(guò)舉例,驗(yàn)證這些猜測(cè)是否正確。同時(shí)滲透在舉例中,如果 能找到一個(gè)反例,就證明這種猜測(cè)是錯(cuò)誤的。培養(yǎng)學(xué)生思維的遷移能力。3、基本練習(xí)。(1)學(xué)生獨(dú)立完成師:通過(guò)努力,我們發(fā)現(xiàn)了加法交換律和乘法交換律,下面同學(xué)們就運(yùn)用這兩個(gè)定律,完成作業(yè)紙第2題??凑l(shuí)算得又對(duì)又快!1949+60= ( ) + ()a + 300 = ( ) +()()+65 =() + 35()+( )=( )+()(2)反應(yīng)師收集3張作業(yè)紙,投影反應(yīng)。200X6 = () X ()% xy =()x()8X()=9X()( )X () = () X ()師:在數(shù)學(xué)中,我們可以用字母來(lái)表示加法交換律:a+b=b+a乘法交換

11、律:aXb=bXa三、延伸拓展.拋出問(wèn)題師:同學(xué)們學(xué)到這兒,我們對(duì)交換律有了一定的研究?!皟蓚€(gè)數(shù)相加,交換加數(shù)的位 置,和不變;兩個(gè)數(shù)相乘,交換乘數(shù)的位置,積不變。現(xiàn)在,我們來(lái)思考這樣一個(gè)問(wèn)題, 如果三個(gè)數(shù)、四個(gè)數(shù),或更多的數(shù)相加,交換加數(shù)的位置,和會(huì)不會(huì)變呢?如果三個(gè)數(shù)、 四個(gè)數(shù)、更多的數(shù)相乘,交換乘數(shù)的位置,積會(huì)不會(huì)變呢? ”請(qǐng)同桌兩人合作,選擇上面的一個(gè)問(wèn)題,舉例驗(yàn)證。.舉例驗(yàn)證,匯報(bào)交流學(xué)生作業(yè)投影匯報(bào):8+7+5 = 8+5+780+150+20=80+20+150=7+8+5=7+8+5= 150+80+20=7 + 5 + 8=20+150+80師:哪幾個(gè)加數(shù)交換了位置?和變嗎?

12、生:這幾個(gè)加數(shù)的位置可以任意交換,和都不變。師:如果有4個(gè)數(shù)相加呢加數(shù)的位置,和會(huì)怎樣? 5個(gè)數(shù)呢? 10個(gè)數(shù)呢?更多的數(shù)呢?生:和都不變。師:所以我們可以說(shuō)“幾個(gè)數(shù)相加,任意交換加數(shù)的位置,和不變?!保ㄉR讀)師:哪些同學(xué)選擇了乘法?反應(yīng):2X3X4= 2X4X3 = 3X2X4 = 3X4X2師:積都相等嗎?生:積相等。師:如果四個(gè)數(shù)相乘呢?五個(gè)數(shù)呢? 10個(gè)數(shù)相乘呢?師:誰(shuí)來(lái)說(shuō)說(shuō)剛才的發(fā)現(xiàn)?生1:幾個(gè)數(shù)相乘,交換乘數(shù)的位置,積不變。生2:幾個(gè)數(shù)相乘,任意交換乘數(shù)的位置,積不變。師:你們覺(jué)得那種說(shuō)法更好?生:幾個(gè)數(shù)相乘,任意交換乘數(shù)的位置,積不變。師:對(duì),幾個(gè)數(shù)相加,任意交換加數(shù)的位置,和

13、不變。幾個(gè)數(shù)相乘,任意交換乘數(shù)的 位置,積不變。這是加法交換律和乘法交換律的推廣應(yīng)用。評(píng)析在“兩個(gè)數(shù)相加或相乘,交換這兩個(gè)數(shù)的位置,得數(shù)不變?!钡幕A(chǔ)上,嘗試進(jìn) 行三個(gè)數(shù)、四個(gè)數(shù)等多個(gè)數(shù)的連加或連乘計(jì)算,得數(shù)會(huì)變嗎?學(xué)生合作進(jìn)行探究,最后得 出“幾個(gè)數(shù)相加或相乘,任意交換數(shù)的位置,得數(shù)不變?!边@是加法交換律和乘法交換律 的推廣應(yīng)用,它為后續(xù)學(xué)習(xí)一些加法和乘法的簡(jiǎn)便運(yùn)算服務(wù)。.拓展練習(xí)下面就請(qǐng)你判斷哪些題目運(yùn)用了交換律?是的打“ J”。我們一起用手勢(shì)來(lái)表示。 TOC o 1-5 h z 1、35+65 = 100()35驗(yàn)算:65+65+351001002、80+10=20+70 ()3、25X

14、7X4 = 25X4X7()4、6+75+25 = 6+ (75+25)()評(píng)析安排這些習(xí)題,使學(xué)生認(rèn)識(shí)合理運(yùn)用交換律,可以使計(jì)算變得更簡(jiǎn)便,體會(huì)學(xué)習(xí) 交換律的作用。像6+75+25=6+ (75+25)這題,滲透了加法結(jié)合律。四、課堂小結(jié)師:通過(guò)今天的學(xué)習(xí),你有哪些收獲?生:我明白了,加法和乘法中有交換律,但卻沒(méi)有減法交換律或除法交換律。生:我發(fā)現(xiàn),有了猜測(cè),還需要舉許多例子來(lái)驗(yàn)證,這樣得出的結(jié)論才準(zhǔn)確。生:我還發(fā)現(xiàn),只要能舉出一個(gè)反例,那我們就能肯定猜測(cè)是錯(cuò)誤的。生:舉例驗(yàn)證時(shí),例子應(yīng)盡可能多,而且,應(yīng)盡可能舉一些特殊的例子,這樣,得出 的結(jié)論才更可靠。師:同學(xué)們,這節(jié)課咱們通過(guò)自己的努力

15、,親自研究了交換律。在以后的數(shù)學(xué)學(xué)習(xí)中,4-還有很多的運(yùn)算定律等著我們?nèi)グl(fā)現(xiàn)、去研究。板書(shū)設(shè)計(jì):3+4=4+3 TOC o 1-5 h z 772+5=5+2775+8=8+513139+10=10+9加法(乘法)交換律加法(乘法)交換律8-6 豐 6-8除法 6 + 2 W 2 + 6a+b=b+a在加法中,兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變。axb=bxa在乘法中,兩個(gè)數(shù)相乘,交換乘數(shù)的位置,積不變。1919課后反思:這節(jié)課是將北師大版數(shù)學(xué)第七冊(cè)中的交換律和結(jié)合律這一內(nèi)容進(jìn)行整合,把加法、乘 法交換律放在一起探究。交換律的理解不難,得出結(jié)論也容易。本課主要滲透:(1)探究性數(shù)學(xué)課堂教學(xué)模式

16、:提出猜測(cè)一一舉例驗(yàn)證一一得出結(jié)論一一應(yīng)用拓展。在探究加法交換律中先提出猜測(cè),舉例驗(yàn)證,得出加法交換律。再由加法交換律提出 新猜測(cè):在減法、除法、乘法中,交換兩個(gè)數(shù)的位置,得數(shù)變不變?學(xué)生再次舉例驗(yàn)證, 得到乘法交換律。在延伸拓展環(huán)節(jié),提出“三個(gè)數(shù)相加或相乘,和(積)會(huì)變嗎?四個(gè)數(shù) 呢?更多的數(shù)呢? ”這個(gè)猜測(cè),小組合作驗(yàn)證,最后得出“幾個(gè)數(shù)相加(相乘),交換加 (乘)數(shù)的位置,和(積)不變?!边@是交換律的拓展。4-(2)在舉例中,只要舉出一個(gè)反例,就說(shuō)明猜測(cè)是錯(cuò)的。如在驗(yàn)證“減法中,交換被減 數(shù)和減數(shù)的位置,差不變。”時(shí),有學(xué)生舉例:“8 8=0,交換位置后還是8 8=0,所以 8 8 = 8 8,得出交換被減數(shù)和減數(shù)的位置,差不變?!瘪R上有學(xué)生舉例:“5 3 = 2, 3 -5不夠減,所以5 3W3 5,得出交換被減數(shù)和減數(shù)的位置,差變了?!苯處熥穯?wèn),這 樣的減法例子還有嗎?有很多,其實(shí)只要舉出這樣一個(gè)反例,就可以說(shuō)明這個(gè)猜測(cè)是錯(cuò)的。作 業(yè) 紙 (1)姓名.我來(lái)舉例驗(yàn)證:)。我認(rèn)為“在加法中,兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變。”是(.我來(lái)填一填: TOC o 1-5 h z 1949 + 60= () + ()a +

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論