版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡
2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1己知函數(shù)的圖象與直線恰有四個公共點,其中,則( )AB0C1D2命題“”的否定為( )ABCD3過直線上一點作圓的兩條切線,為切點,當直線,關(guān)于直線對稱時,( )ABCD4函數(shù)的部分圖象如圖中實線所示,圖中圓與的圖象交于兩點,且在軸上,則下列說法中正確的是A函數(shù)的最小正周期是B函數(shù)的圖象關(guān)于點成中心對稱C函數(shù)在單調(diào)遞增D函數(shù)的圖象向右平移后關(guān)于原點成中心對稱5若函數(shù)f(x)a|2x4|(a0,a1)滿足f(1),則f(x)的單調(diào)遞減區(qū)間是( )A(,2B2,)C2,)D(,26一個
3、正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為( )ABCD7若直線的傾斜角為,則的值為( )ABCD8的展開式中各項系數(shù)的和為2,則該展開式中常數(shù)項為A-40B-20C20D409我國古代數(shù)學名著九章算術(shù)有一問題:“今有鱉臑(bi na),下廣五尺,無袤;上袤四尺,無廣;高七尺.問積幾何?”該幾何體的三視圖如圖所示,則此幾何體外接球的表面積為( )A平方尺B平方尺C平方尺D平方尺10已知過點且與曲線相切的直線的條數(shù)有( )A0B1C2D311已知函數(shù),若有2個零點,則實數(shù)的取值范圍為( )ABCD12如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的
4、是某幾何體的三視圖,則該幾何體的體積是( )ABCD8二、填空題:本題共4小題,每小題5分,共20分。13已知,如果函數(shù)有三個零點,則實數(shù)的取值范圍是_14設(其中為自然對數(shù)的底數(shù)),若函數(shù)恰有4個不同的零點,則實數(shù)的取值范圍為_.15設全集,集合,則集合_.16已知函數(shù),對于任意都有,則的值為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)古人云:“腹有詩書氣自華.”為響應全民閱讀,建設書香中國,校園讀書活動的熱潮正在興起.某校為統(tǒng)計學生一周課外讀書的時間,從全校學生中隨機抽取名學生進行問卷調(diào)査,統(tǒng)計了他們一周課外讀書時間(單位:)的數(shù)據(jù)如下:一周課外讀書時間
5、/合計頻數(shù)46101214244634頻率0.020.030.050.060.070.120.250.171(1)根據(jù)表格中提供的數(shù)據(jù),求,的值并估算一周課外讀書時間的中位數(shù).(2)如果讀書時間按,分組,用分層抽樣的方法從名學生中抽取20人.求每層應抽取的人數(shù);若從,中抽出的學生中再隨機選取2人,求這2人不在同一層的概率.18(12分)已知橢圓的中心在坐標原點,其短半軸長為,一個焦點坐標為,點在橢圓上,點在直線上的點,且證明:直線與圓相切;求面積的最小值19(12分)在中,角,的對邊分別為,已知(1)若,成等差數(shù)列,求的值;(2)是否存在滿足為直角?若存在,求的值;若不存在,請說明理由20(1
6、2分)如圖,四棱錐中,底面,點在線段上,且.(1)求證:平面;(2)若,求二面角的正弦值.21(12分)已知,.(1)求的最小值;(2)若對任意,都有,求實數(shù)的取值范圍.22(10分)已知函數(shù)有兩個極值點,.(1)求實數(shù)的取值范圍;(2)證明:.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】先將函數(shù)解析式化簡為,結(jié)合題意可求得切點及其范圍,根據(jù)導數(shù)幾何意義,即可求得的值.【詳解】函數(shù)即直線與函數(shù)圖象恰有四個公共點,結(jié)合圖象知直線與函數(shù)相切于,因為,故,所以.故選:A.【點睛】本題考查了三角函數(shù)的圖像與性質(zhì)的綜合應用,由
7、交點及導數(shù)的幾何意義求函數(shù)值,屬于難題.2C【解析】套用命題的否定形式即可.【詳解】命題“”的否定為“”,所以命題“”的否定為“”.故選:C【點睛】本題考查全稱命題的否定,屬于基礎題.3C【解析】判斷圓心與直線的關(guān)系,確定直線,關(guān)于直線對稱的充要條件是與直線垂直,從而等于到直線的距離,由切線性質(zhì)求出,得,從而得【詳解】如圖,設圓的圓心為,半徑為,點不在直線上,要滿足直線,關(guān)于直線對稱,則必垂直于直線,設,則,,故選:C【點睛】本題考查直線與圓的位置關(guān)系,考查直線的對稱性,解題關(guān)鍵是由圓的兩條切線關(guān)于直線對稱,得出與直線垂直,從而得就是圓心到直線的距離,這樣在直角三角形中可求得角4B【解析】根據(jù)
8、函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質(zhì),即可求解,得到答案【詳解】根據(jù)給定函數(shù)的圖象,可得點的橫坐標為,所以,解得,所以的最小正周期, 不妨令,由周期,所以,又,所以,所以,令,解得,當時,即函數(shù)的一個對稱中心為,即函數(shù)的圖象關(guān)于點成中心對稱故選B【點睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì),其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質(zhì)求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及運算與求解能力,屬于基礎題5B【解析】由f(1)=得a2=,a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-,2上單調(diào)遞減,在2,+
9、)上單調(diào)遞增,所以f(x)在(-,2上單調(diào)遞增,在2,+)上單調(diào)遞減,故選B.6D【解析】試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點:本題主要考查三視圖及幾何體體積的計算.7B【解析】根據(jù)題意可得:,所求式子利用二倍角的正弦函數(shù)公式化簡,再利用同角三角函數(shù)間的基本關(guān)系弦化切后,將代入計算即可求出值【詳解】由于直線的傾斜角為,所以,則故答案選B【點睛】本題考查二倍角的正弦函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,以及直線傾斜角與斜率之間的關(guān)系,熟練掌握公式是解本題的關(guān)鍵8D【解析】令x=1得a=1
10、.故原式=的通項,由5-2r=1得r=2,對應的常數(shù)項=80,由5-2r=-1得r=3,對應的常數(shù)項=-40,故所求的常數(shù)項為40 ,選D解析2.用組合提取法,把原式看做6個因式相乘,若第1個括號提出x,從余下的5個括號中選2個提出x,選3個提出;若第1個括號提出,從余下的括號中選2個提出,選3個提出x.故常數(shù)項=-40+80=409A【解析】根據(jù)三視圖得出原幾何體的立體圖是一個三棱錐,將三棱錐補充成一個長方體,此長方體的外接球就是該三棱錐的外接球,由球的表面積公式計算可得選項.【詳解】由三視圖可得,該幾何體是一個如圖所示的三棱錐,為三棱錐外接球的球心,此三棱錐的外接球也是此三棱錐所在的長方體
11、的外接球,所以為的中點, 設球半徑為,則,所以外接球的表面積,故選:A【點睛】本題考查求幾何體的外接球的表面積,關(guān)鍵在于由幾何體的三視圖得出幾何體的立體圖,找出外接球的球心位置和半徑,屬于中檔題.10C【解析】設切點為,則,由于直線經(jīng)過點,可得切線的斜率,再根據(jù)導數(shù)的幾何意義求出曲線在點處的切線斜率,建立關(guān)于的方程,從而可求方程【詳解】若直線與曲線切于點,則,又,解得,過點與曲線相切的直線方程為或,故選C【點睛】本題主要考查了利用導數(shù)求曲線上過某點切線方程的斜率,求解曲線的切線的方程,其中解答中熟記利用導數(shù)的幾何意義求解切線的方程是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎題11C【解析】
12、令,可得,要使得有兩個實數(shù)解,即和有兩個交點,結(jié)合已知,即可求得答案.【詳解】令,可得,要使得有兩個實數(shù)解,即和有兩個交點,令,可得,當時,函數(shù)在上單調(diào)遞增;當時,函數(shù)在上單調(diào)遞減.當時,若直線和有兩個交點,則.實數(shù)的取值范圍是.故選:C.【點睛】本題主要考查了根據(jù)零點求參數(shù)范圍,解題關(guān)鍵是掌握根據(jù)零點個數(shù)求參數(shù)的解法和根據(jù)導數(shù)求單調(diào)性的步驟,考查了分析能力和計算能力,屬于中檔題.12A【解析】由三視圖還原出原幾何體,得出幾何體的結(jié)構(gòu)特征,然后計算體積【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,故選:A【點睛】本題考查三視圖,考查棱錐的體積公式
13、,掌握基本幾何體的三視圖是解題關(guān)鍵二、填空題:本題共4小題,每小題5分,共20分。13【解析】首先把零點問題轉(zhuǎn)化為方程問題,等價于有三個零點,兩側(cè)開方,可得,即有三個零點,再運用函數(shù)的單調(diào)性結(jié)合最值即可求出參數(shù)的取值范圍.【詳解】若函數(shù)有三個零點,即零點有,顯然,則有,可得,即有三個零點,不妨令,對于,函數(shù)單調(diào)遞增,所以函數(shù)在區(qū)間上只有一解,對于函數(shù),解得,解得,解得,所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,當時,當時,此時函數(shù)若有兩個零點,則有,綜上可知,若函數(shù)有三個零點,則實數(shù)的取值范圍是.故答案為:【點睛】本題考查了函數(shù)零點的零點,恰當?shù)拈_方,轉(zhuǎn)化為函數(shù)有零點問題,注意恰有三個零點條
14、件的應用,根據(jù)函數(shù)的最值求解參數(shù)的范圍,屬于難題.14【解析】求函數(shù),研究函數(shù)的單調(diào)性和極值,作出函數(shù)的圖象,設,若函數(shù)恰有4個零點,則等價為函數(shù)有兩個零點,滿足或,利用一元二次函數(shù)根的分布進行求解即可【詳解】當時,由得:,解得,由得:,解得,即當時,函數(shù)取得極大值,同時也是最大值,(e),當,當,作出函數(shù)的圖象如圖,設,由圖象知,當或,方程有一個根,當或時,方程有2個根,當時,方程有3個根,則,等價為,當時,若函數(shù)恰有4個零點,則等價為函數(shù)有兩個零點,滿足或,則,即(1) 解得:,故答案為:【點睛】本題主要考查函數(shù)與方程的應用,利用換元法進行轉(zhuǎn)化一元二次函數(shù)根的分布以及求的導數(shù),研究函數(shù)的的
15、單調(diào)性和極值是解決本題的關(guān)鍵,屬于難題15【解析】分別解得集合A與集合B的補集,再由集合交集的運算法則計算求得答案.【詳解】由題可知,集合A中集合B的補集,則故答案為:【點睛】本題考查集合的交集與補集運算,屬于基礎題.16【解析】由條件得到函數(shù)的對稱性,從而得到結(jié)果【詳解】ff,x是函數(shù)f(x)2sin(x)的一條對稱軸f2.【點睛】本題考查了正弦型三角函數(shù)的對稱性,注意對稱軸必過最高點或最低點,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1),中位數(shù);(2)三層中抽取的人數(shù)分別為2,5,13;【解析】(1)根據(jù)頻率分布直方表的性質(zhì),即可求得,得到,再結(jié)合中
16、位數(shù)的計算方法,即可求解.(2)由題意知用分層抽樣的方法從樣本中抽取20人,根據(jù)抽樣比,求得在三層中抽取的人數(shù);由知,設內(nèi)被抽取的學生分別為,內(nèi)被抽取的學生分別為,利用列舉法得到基本事件的總數(shù),利用古典概型的概率計算公式,即可求解.【詳解】(1)由題意,可得,所以,.設一周課外讀書時間的中位數(shù)為小時,則,解得,即一周課外讀書時間的中位數(shù)約為小時.(2)由題意知用分層抽樣的方法從樣本中抽取20人,抽樣比為,又因為,的頻數(shù)分別為20,50,130,所以從,三層中抽取的人數(shù)分別為2,5,13.由知,在,兩層中共抽取7人,設內(nèi)被抽取的學生分別為,內(nèi)被抽取的學生分別為,若從這7人中隨機抽取2人,則所有情
17、況為,共有21種,其中2人不在同一層的情況為,共有10種.設事件為“這2人不在同一層”,由古典概型的概率計算公式,可得概率為.【點睛】本題主要考查了頻率分布直方表的性質(zhì),中位數(shù)的求解,以及古典概型的概率計算等知識的綜合應用,著重考查了分析問題和解答問題的能力,屬于基礎題.18證明見解析;1.【解析】由題意可得橢圓的方程為,由點在直線上,且知的斜率必定存在,分類討論當?shù)男甭蕿闀r和斜率不為時的情況列出相應式子,即可得出直線與圓相切;由知,的面積為【詳解】解:由題意,橢圓的焦點在軸上,且,所以所以橢圓的方程為由點在直線上,且知的斜率必定存在,當?shù)男甭蕿闀r,于是,到的距離為,直線與圓相切當?shù)男甭什粸闀r
18、,設的方程為,與聯(lián)立得,所以,從而而,故的方程為,而在上,故,從而,于是此時,到的距離為,直線與圓相切綜上,直線與圓相切由知,的面積為,上式中,當且僅當?shù)忍柍闪ⅲ悦娣e的最小值為1【點睛】本題主要考查直線與橢圓的位置關(guān)系、直線與圓的位置關(guān)系等基礎知識,考查運算求解能力、推理論證能力和創(chuàng)新意識,考查化歸與轉(zhuǎn)化思想,屬于難題19見解析【解析】(1)因為,成等差數(shù)列,所以,由余弦定理可得,因為,所以,即,所以(2)若B為直角,則,由及正弦定理可得,所以,即,上式兩邊同時平方,可得,所以(*)又,所以,所以,與(*)矛盾,所以不存在滿足為直角20(1)證明見解析(2)【解析】(1)要證明平面,只需證
19、明,即可求得答案;(2)先根據(jù)已知證明四邊形為矩形,以為原點,為軸,為軸,為軸,建立坐標系,求得平面的法向量為,平面的法向量,設二面角的平面角為,即可求得答案.【詳解】(1)平面,平面,.,.又,平面.(2)由(1)可知.在中,.又,四邊形為矩形.以為原點,為軸,為軸,為軸,建立坐標系,如圖:則:,:,設平面的法向量為,即,令,則,由題平面,即平面的法向量為由二面角的平面角為銳角,設二面角的平面角為即二面角的正弦值為:.【點睛】本題主要考查了求證線面垂直和向量法求二面角,解題關(guān)鍵是掌握線面垂直判斷定理和向量法求二面角的方法,考查了分析能力和計算能力,屬于中檔題.21(1)2;(2).【解析】(1)化簡得,所以,展開后利用基本不等式求最小值即可;(2)由(1),原不等式可轉(zhuǎn)化為,討論去絕對值即可求得的取值范圍.【詳解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度分享匯編【人事管理篇】十篇
- 單位管理制度范例選集【人事管理】十篇
- 《學校組織結(jié)構(gòu)》課件
- 《建筑環(huán)境管理技術(shù)》課件
- 《紙板的創(chuàng)想-坐椅設計》課件
- 2024年公務員個人年終總結(jié)
- 2014年高考語文試卷(福建)(空白卷)
- 稅務稽查事項總結(jié)
- 雙十二旅游狂歡節(jié)
- 樂器銷售工作總結(jié)
- 2024年山東省臨沂蘭山法院招聘司法輔助人員56人歷年高頻500題難、易錯點模擬試題附帶答案詳解
- 10《吃飯有講究》(教學設計)-2024-2025學年道德與法治一年級上冊統(tǒng)編版
- 江蘇園林綠化工作計劃
- 部編版八年級語文上冊第22課《夢回繁華》精美課件
- GB/T 4706.117-2024家用和類似用途電器的安全第117部分:帶非柔性加熱部件的電暖床墊的特殊要求
- 國家開放大學本科《當代中國政治制度》期末紙質(zhì)考試總題庫2025珍藏版
- GB 44246-2024家用和類似用途電器、體育用品的電氣部分及電玩具安全技術(shù)規(guī)范
- 藥物生殖毒性研究技術(shù)指導原則
- 2024國家開放大學電大本科《混凝土結(jié)構(gòu)設計原理》期末試題及答案試
- DL∕T 1474-2021 交、直流系統(tǒng)用高壓聚合物絕緣子憎水性測量及評估方法
- 金融科技概論教案
評論
0/150
提交評論