版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項1考生要認真填寫考場號和座位序號。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知實數(shù),則下列說法正確的是( )ABCD2若向量,則與共線的向量可以是()ABCD3如圖,在棱長為4的正方體中,E,F(xiàn),G分別為棱 AB,BC,的中點,M為棱AD的中點,設(shè)P,Q為底面ABCD內(nèi)的兩個動點,滿足平面EFG,則的最小值為
2、( )ABCD4甲、乙兩名學(xué)生的六次數(shù)學(xué)測驗成績(百分制)的莖葉圖如圖所示.甲同學(xué)成績的中位數(shù)大于乙同學(xué)成績的中位數(shù);甲同學(xué)的平均分比乙同學(xué)的平均分高;甲同學(xué)的平均分比乙同學(xué)的平均分低;甲同學(xué)成績的方差小于乙同學(xué)成績的方差.以上說法正確的是( )ABCD5已知函數(shù)且的圖象恒過定點,則函數(shù)圖象以點為對稱中心的充要條件是( )ABCD6已知,則的大小關(guān)系為( )ABCD7設(shè),則( )ABCD8已知函數(shù)的一條切線為,則的最小值為( )ABCD9設(shè),是非零向量.若,則( )ABCD102019年10月17日是我國第6個“扶貧日”,某醫(yī)院開展扶貧日“送醫(yī)下鄉(xiāng)”醫(yī)療義診活動,現(xiàn)有五名醫(yī)生被分配到四所不同的
3、鄉(xiāng)鎮(zhèn)醫(yī)院中,醫(yī)生甲被指定分配到醫(yī)院,醫(yī)生乙只能分配到醫(yī)院或醫(yī)院,醫(yī)生丙不能分配到醫(yī)生甲、乙所在的醫(yī)院,其他兩名醫(yī)生分配到哪所醫(yī)院都可以,若每所醫(yī)院至少分配一名醫(yī)生,則不同的分配方案共有( )A18種B20種C22種D24種11在中,角、的對邊分別為、,若,則( )ABCD12 “中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學(xué)著作孫子算經(jīng)卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關(guān)的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列
4、各項之和為( )A56383B57171C59189D61242二、填空題:本題共4小題,每小題5分,共20分。13已知實數(shù)x,y滿足(2x-y)2+4y14若,則_.15為了了解一批產(chǎn)品的長度(單位:毫米)情況,現(xiàn)抽取容量為400的樣本進行檢測,如圖是檢測結(jié)果的頻率分布直方圖,根據(jù)產(chǎn)品標準,單件產(chǎn)品長度在區(qū)間的一等品,在區(qū)間和的為二等品,其余均為三等品,則樣本中三等品的件數(shù)為_16已知(且)有最小值,且最小值不小于1,則的取值范圍為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)設(shè)函數(shù),.(1)解不等式;(2)若對任意的實數(shù)恒成立,求的取值范圍.18(12分)
5、在中,角的對邊分別為,且,(1)求的值;(2)若求的面積19(12分)某藝術(shù)品公司欲生產(chǎn)一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內(nèi)接圓錐組成,圓錐的側(cè)面用于藝術(shù)裝飾,如圖1.為了便于設(shè)計,可將該禮品看成是由圓及其內(nèi)接等腰三角形繞底邊上的高所在直線旋轉(zhuǎn)180而成,如圖2.已知圓的半徑為,設(shè),圓錐的側(cè)面積為.(1)求關(guān)于的函數(shù)關(guān)系式;(2)為了達到最佳觀賞效果,要求圓錐的側(cè)面積最大.求取得最大值時腰的長度.20(12分) 選修4-5:不等式選講:已知函數(shù).(1)當時,求不等式的解集;(2)設(shè),且的最小值為.若,求的最小值.21(12分)如圖,是矩形,的頂點在邊上,點,分別是,上的動點(的長度
6、滿足需求).設(shè),且滿足.(1)求;(2)若,求的最大值.22(10分)隨著現(xiàn)代社會的發(fā)展,我國對于環(huán)境保護越來越重視,企業(yè)的環(huán)保意識也越來越強.現(xiàn)某大型企業(yè)為此建立了5套環(huán)境監(jiān)測系統(tǒng),并制定如下方案:每年企業(yè)的環(huán)境監(jiān)測費用預(yù)算定為1200萬元,日常全天候開啟3套環(huán)境監(jiān)測系統(tǒng),若至少有2套系統(tǒng)監(jiān)測出排放超標,則立即檢查污染源處理系統(tǒng);若有且只有1套系統(tǒng)監(jiān)測出排放超標,則立即同時啟動另外2套系統(tǒng)進行1小時的監(jiān)測,且后啟動的這2套監(jiān)測系統(tǒng)中只要有1套系統(tǒng)監(jiān)測出排放超標,也立即檢查污染源處理系統(tǒng).設(shè)每個時間段(以1小時為計量單位)被每套系統(tǒng)監(jiān)測出排放超標的概率均為,且各個時間段每套系統(tǒng)監(jiān)測出排放超標情
7、況相互獨立.(1)當時,求某個時間段需要檢查污染源處理系統(tǒng)的概率;(2)若每套環(huán)境監(jiān)測系統(tǒng)運行成本為300元/小時(不啟動則不產(chǎn)生運行費用),除運行費用外,所有的環(huán)境監(jiān)測系統(tǒng)每年的維修和保養(yǎng)費用需要100萬元.現(xiàn)以此方案實施,問該企業(yè)的環(huán)境監(jiān)測費用是否會超過預(yù)算(全年按9000小時計算)?并說明理由.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】利用不等式性質(zhì)可判斷,利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性判斷.【詳解】解:對于實數(shù), ,不成立對于不成立對于利用對數(shù)函數(shù)單調(diào)遞增性質(zhì),即可得出對于指數(shù)函數(shù)單調(diào)遞減性質(zhì),因此不成立
8、故選:【點睛】利用不等式性質(zhì)比較大小要注意不等式性質(zhì)成立的前提條件解決此類問題除根據(jù)不等式的性質(zhì)求解外,還經(jīng)常采用特殊值驗證的方法2B【解析】先利用向量坐標運算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B【點睛】本題考查向量的坐標運算和向量平行的判定,屬于基礎(chǔ)題,在解題中要注意橫坐標與橫坐標對應(yīng),縱坐標與縱坐標對應(yīng),切不可錯位.3C【解析】把截面畫完整,可得在上,由知在以為圓心1為半徑的四分之一圓上,利用對稱性可得的最小值【詳解】如圖,分別取的中點,連接,易證共面,即平面為截面,連接,由中位線定理可得,平面,平面,則平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,正方體
9、中平面,從而有,在以為圓心1為半徑的四分之一圓(圓在正方形內(nèi)的部分)上,顯然關(guān)于直線的對稱點為,當且僅當共線時取等號,所求最小值為故選:C【點睛】本題考查空間距離的最小值問題,解題時作出正方體的完整截面求出點軌跡是第一個難點,第二個難點是求出點軌跡,第三個難點是利用對稱性及圓的性質(zhì)求得最小值4A【解析】由莖葉圖中數(shù)據(jù)可求得中位數(shù)和平均數(shù),即可判斷,再根據(jù)數(shù)據(jù)集中程度判斷.【詳解】由莖葉圖可得甲同學(xué)成績的中位數(shù)為,乙同學(xué)成績的中位數(shù)為,故錯誤;,則,故錯誤,正確;顯然甲同學(xué)的成績更集中,即波動性更小,所以方差更小,故正確,故選:A【點睛】本題考查由莖葉圖分析數(shù)據(jù)特征,考查由莖葉圖求中位數(shù)、平均數(shù)
10、.5A【解析】由題可得出的坐標為,再利用點對稱的性質(zhì),即可求出和.【詳解】根據(jù)題意,所以點的坐標為,又 ,所以.故選:A.【點睛】本題考查指數(shù)函數(shù)過定點問題和函數(shù)對稱性的應(yīng)用,屬于基礎(chǔ)題.6D【解析】由指數(shù)函數(shù)的圖像與性質(zhì)易得最小,利用作差法,結(jié)合對數(shù)換底公式及基本不等式的性質(zhì)即可比較和的大小關(guān)系,進而得解.【詳解】根據(jù)指數(shù)函數(shù)的圖像與性質(zhì)可知,由對數(shù)函數(shù)的圖像與性質(zhì)可知,所以最??;而由對數(shù)換底公式化簡可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【點睛】本題考查了指數(shù)式與對數(shù)式的化簡變形,對數(shù)換底公式及基本不等式的簡單應(yīng)用,作差法比較大小,屬于中檔題.7D【解析】由不等式的性質(zhì)
11、及換底公式即可得解.【詳解】解:因為,則,且,所以,又,即,則,即,故選:D.【點睛】本題考查了不等式的性質(zhì)及換底公式,屬基礎(chǔ)題.8A【解析】求導(dǎo)得到,根據(jù)切線方程得到,故,設(shè),求導(dǎo)得到函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故,計算得到答案.【詳解】,則,取,故,.故,故,.設(shè),取,解得.故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故.故選:.【點睛】本題考查函數(shù)的切線問題,利用導(dǎo)數(shù)求最值,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.9D【解析】試題分析:由題意得:若,則;若,則由可知,故也成立,故選D.考點:平面向量數(shù)量積.【思路點睛】幾何圖形中向量的數(shù)量積問題是近幾年高考的又一熱點,作為一類既能考查向量的線性運
12、算、坐標運算、數(shù)量積及平面幾何知識,又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問題,實有其合理之處.解決此類問題的常用方法是:利用已知條件,結(jié)合平面幾何知識及向量數(shù)量積的基本概念直接求解(較易);將條件通過向量的線性運算進行轉(zhuǎn)化,再利用求解(較難);建系,借助向量的坐標運算,此法對解含垂直關(guān)系的問題往往有很好效果.10B【解析】分兩類:一類是醫(yī)院A只分配1人,另一類是醫(yī)院A分配2人,分別計算出兩類的分配種數(shù),再由加法原理即可得到答案.【詳解】根據(jù)醫(yī)院A的情況分兩類:第一類:若醫(yī)院A只分配1人,則乙必在醫(yī)院B,當醫(yī)院B只有1人,則共有種不同分配方案,當醫(yī)院B有2人,則共有種不同分配方案,所以當
13、醫(yī)院A只分配1人時,共有種不同分配方案;第二類:若醫(yī)院A分配2人,當乙在醫(yī)院A時,共有種不同分配方案,當乙不在A醫(yī)院,在B醫(yī)院時,共有種不同分配方案,所以當醫(yī)院A分配2人時,共有種不同分配方案;共有20種不同分配方案.故選:B【點睛】本題考查排列與組合的綜合應(yīng)用,在做此類題時,要做到分類不重不漏,考查學(xué)生分類討論的思想,是一道中檔題.11B【解析】利用兩角差的正弦公式和邊角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【詳解】,即,即,得,.由余弦定理得,由正弦定理,因此,.故選:B.【點睛】本題考查三角形中角的正弦值的計算,考查兩角差的正弦公式、邊角互化思想、
14、余弦定理與正弦定理的應(yīng)用,考查運算求解能力,屬于中等題.12C【解析】根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構(gòu)成等差數(shù)列,然后根據(jù)等差數(shù)列的前項和公式,可得結(jié)果.【詳解】被5除余3且被7除余2的正整數(shù)構(gòu)成首項為23,公差為的等差數(shù)列,記數(shù)列則 令,解得.故該數(shù)列各項之和為.故選:C.【點睛】本題考查等差數(shù)列的應(yīng)用,屬基礎(chǔ)題。二、填空題:本題共4小題,每小題5分,共20分。132【解析】直接利用柯西不等式得到答案.【詳解】根據(jù)柯西不等式:2x-y2+4y當2x-y=2y,即x=328故答案為:2.【點睛】本題考查了柯西不等式求最值,也可以利用均值不等式,三角換元求得答案.14【解析】
15、由已知利用兩角差的正弦函數(shù)公式可得,兩邊平方,由同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式即可計算得解【詳解】,得,在等式兩邊平方得,解得.故答案為:.【點睛】本題主要考查了兩角差的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題15100.【解析】分析:根據(jù)頻率分布直方圖得到三等品的頻率,然后可求得樣本中三等品的件數(shù)詳解:由題意得,三等品的長度在區(qū)間,和內(nèi),根據(jù)頻率分布直方圖可得三等品的頻率為,樣本中三等品的件數(shù)為.點睛:頻率分布直方圖的縱坐標為,因此每一個小矩形的面積表示樣本個體落在該區(qū)間內(nèi)的頻率,把小矩形的高視為頻率時常犯
16、的錯誤16【解析】真數(shù)有最小值,根據(jù)已知可得的范圍,求出函數(shù)的最小值,建立關(guān)于的不等量關(guān)系,求解即可.【詳解】,且(且)有最小值,的取值范圍為.故答案為:.【點睛】本題考查對數(shù)型復(fù)合函數(shù)的性質(zhì),熟練掌握基本初等函數(shù)的性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17 (1);(2)【解析】試題分析:(1)將絕對值不等式兩邊平方,化為二次不等式求解(2)將問題化為分段函數(shù)問題,通過分類討論并根據(jù)恒成立問題的解法求解即可試題解析: 整理得解得 解得 ,且無限趨近于4,綜上的取值范圍是18(1)3(2)78【解析】試題分析:(1)由兩角和差公式得到,由三角
17、形中的數(shù)值關(guān)系得到,進而求得數(shù)值;(2)由三角形的三個角的關(guān)系得到,再由正弦定理得到b=15,故面積公式為.解析:(1)在中,由,得為銳角,所以,所以, 所以. (2)在三角形中,由,所以, 由, 由正弦定理,得,所以的面積. 19(1),(2)側(cè)面積取得最大值時,等腰三角形的腰的長度為【解析】試題分析:(1)由條件,所以S,;(2)令,所以得,通過求導(dǎo)分析,得在時取得極大值,也是最大值試題解析:(1)設(shè)交于點,過作,垂足為, 在中,在中,所以S,(2)要使側(cè)面積最大,由(1)得: 令,所以得,由得:當時,當時,所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,所以在時取得極大值,也是最大值;所以當時,
18、側(cè)面積取得最大值, 此時等腰三角形的腰長答:側(cè)面積取得最大值時,等腰三角形的腰的長度為20(1) (2)【解析】(1)當時,原不等式可化為,分類討論即可求得不等式的解集;(2)由題意得,的最小值為,所以,由,得,利用基本不等式即可求解其最小值【詳解】(1)當時,原不等式可化為,當時,不等式可化為,解得,此時;當時,不等式可化為,解得,此時;當時,不等式可化為,解得,此時,綜上,原不等式的解集為.(2)由題意得, ,因為的最小值為,所以,由,得,所以 ,當且僅當,即,時,的最小值為.【點睛】本題主要考查了絕對值不等式問題,對于含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解法一是運用分類討論思想,法二是運用數(shù)形結(jié)合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時強化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動向21(1)(2)【解析】(1)利用正弦定理和余弦定理化簡,根據(jù)勾股定理逆定理求得.(2)設(shè),由此求得的表達式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設(shè),由,根據(jù)正弦定理和余弦定理得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程檢驗鑒定報告-文書模板
- 《保險公司主持技巧》課件
- 銀行合規(guī)管理制度推廣
- 酒店餐飲服務(wù)管理制度
- 直接引語和間接引語課件詳細
- 2024年中國鋰電池負極材料行業(yè)現(xiàn)狀及發(fā)展趨勢分析
- 力和機械復(fù)習(xí)課件
- 建筑專業(yè)社會實踐報告
- 建設(shè)工程招標代理合同GF
- 泰勒公式課件修正
- 施工現(xiàn)場危險源辨識清單-2014年版
- 伯牙鼓琴完美版課件
- 綜合分析三部門條件下國民收入水平取決于什么因素?如何決定國民收入-怎樣使國民收入更快更好的增長
- 年產(chǎn)10萬噸生物有機肥項目可行性報告
- 純氧連續(xù)氣化技術(shù)的應(yīng)用ppt
- 農(nóng)產(chǎn)品營銷與品牌建設(shè)54張課件
- 汽車維修公務(wù)車輛定點維修車輛保養(yǎng)投標方案
- 《獸醫(yī)微生物學(xué)》考試復(fù)習(xí)題庫附答案
- 先進個人主要事跡8篇
- 魁拔設(shè)定精美動態(tài)ppt作品
- 高等學(xué)校國家安全教育學(xué)習(xí)通課后章節(jié)答案期末考試題庫2023年
評論
0/150
提交評論