2022屆九江市高考壓軸卷數(shù)學試卷含解析_第1頁
2022屆九江市高考壓軸卷數(shù)學試卷含解析_第2頁
2022屆九江市高考壓軸卷數(shù)學試卷含解析_第3頁
2022屆九江市高考壓軸卷數(shù)學試卷含解析_第4頁
2022屆九江市高考壓軸卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項1考試結束后,請將本試卷和答題卡一并交回2答題前,請務必將自己的姓名、準考證號用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目

2、要求的。1某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是( )ABCD2已知向量,則向量在向量方向上的投影為( )ABCD3關于函數(shù),有下列三個結論:是的一個周期;在上單調(diào)遞增;的值域為.則上述結論中,正確的個數(shù)為()ABCD4已知函數(shù)若函數(shù)在上零點最多,則實數(shù)的取值范圍是( )ABCD5 “幻方”最早記載于我國公元前500年的春秋時期大戴禮中“階幻方”是由前個正整數(shù)組成的個階方陣,其各行各列及兩條對角線所含的個數(shù)之和(簡稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示)則“5階幻方”的幻和為( )A75B65C55D456已知將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的

3、圖象,若和的圖象都關于對稱,則的值為( )A2B3C4D7設為虛數(shù)單位,為復數(shù),若為實數(shù),則( )ABCD8已知等比數(shù)列的前項和為,且滿足,則的值是( )ABCD9已知復數(shù)z(1+2i)(1+ai)(aR),若zR,則實數(shù)a( )ABC2D210已知為虛數(shù)單位,實數(shù)滿足,則 ( )A1BCD11已知在平面直角坐標系中,圓:與圓:交于,兩點,若,則實數(shù)的值為( )A1B2C-1D-212已知函數(shù),若對于任意的,函數(shù)在內(nèi)都有兩個不同的零點,則實數(shù)的取值范圍為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13連續(xù)2次拋擲一顆質地均勻的骰子(六個面上分別標有數(shù)字1,2,3,4,5,6的

4、正方體),觀察向上的點數(shù),則事件“點數(shù)之積是3的倍數(shù)”的概率為_14已知數(shù)列的前項和為,且成等差數(shù)列,數(shù)列的前項和為,則滿足的最小正整數(shù)的值為_.15已知向量,且,則_.16在四棱錐中,是邊長為的正三角形,為矩形,.若四棱錐的頂點均在球的球面上,則球的表面積為_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知正項數(shù)列的前項和.(1)若數(shù)列為等比數(shù)列,求數(shù)列的公比的值;(2)設正項數(shù)列的前項和為,若,且.求數(shù)列的通項公式;求證:.18(12分)已知函數(shù)(1)當時,若恒成立,求的最大值;(2)記的解集為集合A,若,求實數(shù)的取值范圍.19(12分)己知,函數(shù).(1)若

5、,解不等式;(2)若函數(shù),且存在使得成立,求實數(shù)的取值范圍.20(12分)已知函數(shù).(1)若在上為單調(diào)函數(shù),求實數(shù)a的取值范圍:(2)若,記的兩個極值點為,記的最大值與最小值分別為M,m,求的值.21(12分)已知各項均不相等的等差數(shù)列的前項和為, 且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.22(10分)設函數(shù).(1)解不等式;(2)記的最大值為,若實數(shù)、滿足,求證:.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】根據(jù)三視圖判斷出幾何體為正四棱錐,由此計算出幾何體的表面積.【詳解】根據(jù)三視圖可知,該幾

6、何體為正四棱錐.底面積為.側面的高為,所以側面積為.所以該幾何體的表面積是.故選:D【點睛】本小題主要考查由三視圖判斷原圖,考查錐體表面積的計算,屬于基礎題.2A【解析】投影即為,利用數(shù)量積運算即可得到結論.【詳解】設向量與向量的夾角為,由題意,得,所以,向量在向量方向上的投影為.故選:A.【點睛】本題主要考察了向量的數(shù)量積運算,難度不大,屬于基礎題.3B【解析】利用三角函數(shù)的性質,逐個判斷即可求出【詳解】因為,所以是的一個周期,正確;因為,所以在上不單調(diào)遞增,錯誤;因為,所以是偶函數(shù),又是的一個周期,所以可以只考慮時,的值域當時,在上單調(diào)遞增,所以,的值域為,錯誤;綜上,正確的個數(shù)只有一個,

7、故選B【點睛】本題主要考查三角函數(shù)的性質應用4D【解析】將函數(shù)的零點個數(shù)問題轉化為函數(shù)與直線的交點的個數(shù)問題,畫出函數(shù)的圖象,易知直線過定點,故與在時的圖象必有兩個交點,故只需與在時的圖象有兩個交點,再與切線問題相結合,即可求解.【詳解】由圖知與有個公共點即可,即,當設切點,則,.故選:D.【點睛】本題考查了函數(shù)的零點個數(shù)的問題,曲線的切線問題,注意運用轉化思想和數(shù)形結合思想,屬于較難的壓軸題.5B【解析】計算的和,然后除以,得到“5階幻方”的幻和.【詳解】依題意“5階幻方”的幻和為,故選B.【點睛】本小題主要考查合情推理與演繹推理,考查等差數(shù)列前項和公式,屬于基礎題.6B【解析】因為將函數(shù)(

8、,)的圖象向右平移個單位長度后得到函數(shù)的圖象,可得,結合已知,即可求得答案.【詳解】將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,又和的圖象都關于對稱,由,得,即,又,.故選:B.【點睛】本題主要考查了三角函數(shù)圖象平移和根據(jù)圖象對稱求參數(shù),解題關鍵是掌握三角函數(shù)圖象平移的解法和正弦函數(shù)圖象的特征,考查了分析能力和計算能力,屬于基礎題.7B【解析】可設,將化簡,得到,由復數(shù)為實數(shù),可得,解方程即可求解【詳解】設,則.由題意有,所以.故選:B【點睛】本題考查復數(shù)的模長、除法運算,由復數(shù)的類型求解對應參數(shù),屬于基礎題8C【解析】利用先求出,然后計算出結果.【詳解】根據(jù)題意,當時,,故當時,,

9、數(shù)列是等比數(shù)列,則,故,解得,故選.【點睛】本題主要考查了等比數(shù)列前項和的表達形式,只要求出數(shù)列中的項即可得到結果,較為基礎.9D【解析】化簡z(1+2i)(1+ai)=,再根據(jù)zR求解.【詳解】因為z(1+2i)(1+ai)=,又因為zR,所以,解得a-2.故選:D【點睛】本題主要考查復數(shù)的運算及概念,還考查了運算求解的能力,屬于基礎題.10D【解析】 ,則 故選D.11D【解析】由可得,O在AB的中垂線上,結合圓的性質可知O在兩個圓心的連線上,從而可求.【詳解】因為,所以O在AB的中垂線上,即O在兩個圓心的連線上,三點共線,所以,得,故選D.【點睛】本題主要考查圓的性質應用,幾何性質的轉化

10、是求解的捷徑.12D【解析】將原題等價轉化為方程在內(nèi)都有兩個不同的根,先求導,可判斷時,是增函數(shù);當時,是減函數(shù).因此,再令,求導得,結合韋達定理可知,要滿足題意,只能是存在零點,使得在有解,通過導數(shù)可判斷當時,在上是增函數(shù);當時,在上是減函數(shù);則應滿足,再結合,構造函數(shù),求導即可求解;【詳解】函數(shù)在內(nèi)都有兩個不同的零點,等價于方程在內(nèi)都有兩個不同的根.,所以當時,是增函數(shù);當時,是減函數(shù).因此.設,若在無解,則在上是單調(diào)函數(shù),不合題意;所以在有解,且易知只能有一個解.設其解為,當時,在上是增函數(shù);當時,在上是減函數(shù).因為,方程在內(nèi)有兩個不同的根,所以,且.由,即,解得.由,即,所以.因為,所

11、以,代入,得.設,所以在上是增函數(shù),而,由可得,得.由在上是增函數(shù),得.綜上所述,故選:D.【點睛】本題考查由函數(shù)零點個數(shù)求解參數(shù)取值范圍問題,構造函數(shù)法,導數(shù)法研究函數(shù)增減性與最值關系,轉化與化歸能力,屬于難題二、填空題:本題共4小題,每小題5分,共20分。13【解析】總事件數(shù)為,目標事件:當?shù)谝活w骰子為1,2,4,6,具體事件有,共8種;當?shù)谝活w骰子為3,6,則第二顆骰子隨便都可以,則有種;所以目標事件共20中,所以。141【解析】本題先根據(jù)公式初步找到數(shù)列的通項公式,然后根據(jù)等差中項的性質可解得的值,即可確定數(shù)列的通項公式,代入數(shù)列的表達式計算出數(shù)列的通項公式,然后運用裂項相消法計算出前

12、項和,再代入不等式進行計算可得最小正整數(shù)的值【詳解】由題意,當時,當時,則,成等差數(shù)列,即,解得,即,即,即滿足的最小正整數(shù)的值為1故答案為:1【點睛】本題主要考查數(shù)列求通項公式、裂項相消法求前項和,考查了轉化思想、方程思想,考查了不等式的計算、邏輯思維能力和數(shù)學運算能力15【解析】由向量平行的坐標表示得出,求解即可得出答案.【詳解】因為,所以,解得.故答案為:【點睛】本題主要考查了由向量共線或平行求參數(shù),屬于基礎題.16【解析】做 中點,的中點,連接,由已知條件可求出,運用余弦定理可求,從而在平面中建立坐標系,則以及的外接圓圓心為和長方形的外接圓圓心為在該平面坐標系的坐標可求,通過球心滿足,

13、即可求出的坐標,從而可求球的半徑,進而能求出球的表面積.【詳解】解:如圖做 中點,的中點,連接 ,由題意知,則 設的外接圓圓心為,則在直線上且 設長方形的外接圓圓心為,則在上且.設外接球的球心為 在 中,由余弦定理可知,.在平面中,以 為坐標原點,以 所在直線為 軸,以過點垂直于 軸的直線為 軸,如圖建立坐標系,由題意知,在平面中且 設 ,則,因為,所以 解得.則 所以球的表面積為.故答案為: .【點睛】本題考查了幾何體外接球的問題,考查了球的表面積.關于幾何體的外接球的做題思路有:一是通過將幾何體補充到長方體中,將幾何體的外接球等同于長方體的外接球,求出體對角線即為直徑,但這種方法適用性較差

14、;二是通過球的球心與各面外接圓圓心的連線與該平面垂直,設半徑列方程求解;三是通過空間、平面坐標系進行求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1);(2);詳見解析.【解析】(1)依題意可表示,相減得,由等比數(shù)列通項公式轉化為首項與公比,解得答案,并由其都是正項數(shù)列舍根; (2)由題意可表示,兩式相減得,由其都是正項并整理可得遞推關系,由等差數(shù)列的通項公式即可得答案;由已知關系,表示并相減即可表示遞推關系,顯然當時,成立,當,時,表示,由分組求和與正項數(shù)列性質放縮不等式得證.【詳解】解:(1)依題意可得,兩式相減,得,所以,因為,所以,且,解得.(2)因為,所以

15、,兩式相減,得,即.因為,所以,即.而當時,可得,故,所以對任意的正整數(shù)都成立,所以數(shù)列是等差數(shù)列,公差為1,首項為1,所以數(shù)列的通項公式為.因為,所以,兩式相減,得,即,所以對任意的正整數(shù),都有.令,而當時,顯然成立,所以當,時,所以,即,所以,得證.【點睛】本題考查由前n項和關系求等比數(shù)列公比,求等差數(shù)列通項公式,還考查了由分組求和表示數(shù)列和并由正項數(shù)列放縮證明不等式,屬于難題.18(1);(2)【解析】(1)當時,由題意得到,令,分類討論求得函數(shù)的最小值,即可求得的最大值.(2)由時,不等式恒成立,轉化為在上恒成立,得到,即可求解.【詳解】(1)由題意,當時,由,可得,令,則只需,當時,

16、;當時,;當時,;故當時,取得最小值,即的最大值為.(2)依題意,當時,不等式恒成立,即在上恒成立,所以,即,即,解得在上恒成立,則,所以,所示實數(shù)的取值范圍是.【點睛】本題主要考查了含絕對值的不等式的解法,以及不等式的恒成立問題的求解與應用,著重考查了轉化思想,以及推理與計算能力.19(1);(2)【解析】(1)零點分段解不等式即可(2)等價于,由,得不等式即可求解【詳解】(1)當時,當時,由,解得;當時,由,解得;當時,由,解得.綜上可知,原不等式的解集為.(2).存在使得成立,等價于.又因為,所以,即.解得,結合,所以實數(shù)的取值范圍為.【點睛】本題考查絕對值不等式的解法,考查不等式恒成立

17、及最值,考查轉化思想,是中檔題20(1);(2)【解析】(1)求導.根據(jù)單調(diào),轉化為對恒成立求解(2)由(1)知,是的兩個根,不妨設,令. 根據(jù),確定,將轉化為. 令,用導數(shù)法研究其單調(diào)性求最值.【詳解】(1)的定義域為,.因為單調(diào),所以對恒成立,所以,恒成立,因為,當且僅當時取等號,所以;(2)由(1)知,是的兩個根.從而,不妨設,則. 因為,所以t為關于a的減函數(shù),所以. 令,則. 因為當時,在上為減函數(shù).所以當時,.從而,所以在上為減函數(shù).所以當時,.【點睛】本題主要考查導數(shù)在函數(shù)中的綜合應用,還考查了轉化化歸的思想和運算求解的能力,屬于難題.21(1);(2)【解析】試題分析:(1)設公差為,列出關于的方程組,求解的值,即可得到數(shù)列的通項公式;(2)由(1)可得,即可利用裂項相消求解數(shù)列的和.試題解析:(1)設公差為.由已知得,解得或(舍去), 所以,故.(2),考點:等差數(shù)列

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論