貴州省畢節(jié)大方縣德育中學(xué)2023學(xué)年高三下學(xué)期第六次檢測數(shù)學(xué)試卷(含解析)_第1頁
貴州省畢節(jié)大方縣德育中學(xué)2023學(xué)年高三下學(xué)期第六次檢測數(shù)學(xué)試卷(含解析)_第2頁
貴州省畢節(jié)大方縣德育中學(xué)2023學(xué)年高三下學(xué)期第六次檢測數(shù)學(xué)試卷(含解析)_第3頁
貴州省畢節(jié)大方縣德育中學(xué)2023學(xué)年高三下學(xué)期第六次檢測數(shù)學(xué)試卷(含解析)_第4頁
貴州省畢節(jié)大方縣德育中學(xué)2023學(xué)年高三下學(xué)期第六次檢測數(shù)學(xué)試卷(含解析)_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2023學(xué)年高考數(shù)學(xué)模擬測試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1若各項均為正數(shù)的等比數(shù)列滿足,則公比( )A1B2C3D42已知拋物線和點,直線與拋物線交于不同兩點,直線與拋物線交于另一點給出以下判斷:以為直徑的圓與拋物線準(zhǔn)線相離;直線與直線的斜率乘積

2、為;設(shè)過點,的圓的圓心坐標(biāo)為,半徑為,則其中,所有正確判斷的序號是( )ABCD3若點是角的終邊上一點,則( )ABCD4已知,則的取值范圍是()A0,1BC1,2D0,25如圖,平面與平面相交于,點,點,則下列敘述錯誤的是( )A直線與異面B過只有唯一平面與平行C過點只能作唯一平面與垂直D過一定能作一平面與垂直6百年雙中的校訓(xùn)是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味運動會中有這樣的一個小游戲.袋子中有大小、形狀完全相同的四個小球,分別寫有“仁”、“智”、“雅”、“和”四個字,有放回地從中任意摸出一個小球,直到“仁”、“智”兩個字都摸到就停止摸球.小明同學(xué)用隨機模擬的

3、方法恰好在第三次停止摸球的概率.利用電腦隨機產(chǎn)生1到4之間(含1和4)取整數(shù)值的隨機數(shù),分別用1,2,3,4代表“仁”、“智”、“雅”、“和”這四個字,以每三個隨機數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下20組隨機數(shù):141 432 341 342 234 142 243 331 112 322342 241 244 431 233 214 344 142 134 412由此可以估計,恰好第三次就停止摸球的概率為( )ABCD7易系辭上有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白

4、圈為陽數(shù),黑點為陰數(shù).若從這10個數(shù)中任取3個數(shù),則這3個數(shù)中至少有2個陽數(shù)且能構(gòu)成等差數(shù)列的概率為( ) ABCD8函數(shù)的圖象的大致形狀是( )ABCD9過直線上一點作圓的兩條切線,為切點,當(dāng)直線,關(guān)于直線對稱時,( )ABCD10關(guān)于函數(shù),有下列三個結(jié)論:是的一個周期;在上單調(diào)遞增;的值域為.則上述結(jié)論中,正確的個數(shù)為()ABCD11洛書,古稱龜書,是陰陽五行術(shù)數(shù)之源,在古代傳說中有神龜出于洛水,其甲殼上心有此圖象,結(jié)構(gòu)是戴九履一,左三右七,二四為肩,六八為足,以五居中,五方白圈皆陽數(shù),四角黑點為陰數(shù)如圖,若從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),則其和等于11的概率是( )ABCD12

5、已知雙曲線的一條漸近線經(jīng)過圓的圓心,則雙曲線的離心率為( )ABCD2二、填空題:本題共4小題,每小題5分,共20分。13五聲音階是中國古樂基本音階,故有成語“五音不全”.中國古樂中的五聲音階依次為:宮、商、角、徵、羽,如果把這五個音階全用上,排成一個五個音階的音序,且要求宮、羽兩音階不相鄰且在角音階的同側(cè),可排成_種不同的音序.14若四棱錐的側(cè)面內(nèi)有一動點Q,已知Q到底面的距離與Q到點P的距離之比為正常數(shù)k,且動點Q的軌跡是拋物線,則當(dāng)二面角平面角的大小為時,k的值為_.15在中,內(nèi)角所對的邊分別是.若,則_,面積的最大值為_.16在中,內(nèi)角的對邊分別是,若,則_.三、解答題:共70分。解答

6、應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)如圖,底面ABCD是邊長為2的菱形,平面ABCD,BE與平面ABCD所成的角為.(1)求證:平面平面BDE;(2)求二面角B-EF-D的余弦值.18(12分)已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)在ABC中,角A,B,C所對的邊分別是a,b,c,若滿足,求.19(12分)在ABC中,角A,B,C所對的邊分別為a,b,c,且滿足bcosAasinB1(1)求A;(2)已知a2,B,求ABC的面積20(12分)如圖,在中,已知,為線段的中點,是由繞直線旋轉(zhuǎn)而成,記二面角的大小為.(1)當(dāng)平面平面時,求的值;(2)當(dāng)時,求二面角的余弦值.21(

7、12分) “綠水青山就是金山銀山”,為推廣生態(tài)環(huán)境保護意識,高二一班組織了環(huán)境保護興趣小組,分為兩組,討論學(xué)習(xí)甲組一共有人,其中男生人,女生人,乙組一共有人,其中男生人,女生人,現(xiàn)要從這人的兩個興趣小組中抽出人參加學(xué)校的環(huán)保知識競賽.(1)設(shè)事件為 “選出的這個人中要求兩個男生兩個女生,而且這兩個男生必須來自不同的組”,求事件發(fā)生的概率;(2)用表示抽取的人中乙組女生的人數(shù),求隨機變量的分布列和期望22(10分)我國在貴州省平塘縣境內(nèi)修建的500米口徑球面射電望遠(yuǎn)鏡(FAST)是目前世界上最大單口徑射電望遠(yuǎn)鏡.使用三年來,已發(fā)現(xiàn)132顆優(yōu)質(zhì)的脈沖星候選體,其中有93顆已被確認(rèn)為新發(fā)現(xiàn)的脈沖星,

8、脈沖星是上世紀(jì)60年代天文學(xué)的四大發(fā)現(xiàn)之一,脈沖星就是正在快速自轉(zhuǎn)的中子星,每一顆脈沖星每兩脈沖間隔時間(脈沖星的自轉(zhuǎn)周期)是-定的,最小小到0.0014秒,最長的也不過11.765735秒.某-天文研究機構(gòu)觀測并統(tǒng)計了93顆已被確認(rèn)為新發(fā)現(xiàn)的脈沖星的自轉(zhuǎn)周期,繪制了如圖的頻率分布直方圖.(1)在93顆新發(fā)現(xiàn)的脈沖星中,自轉(zhuǎn)周期在2至10秒的大約有多少顆?(2)根據(jù)頻率分布直方圖,求新發(fā)現(xiàn)脈沖星自轉(zhuǎn)周期的平均值.2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【答案解析】由正項等比數(shù)列滿足,

9、即,又,即,運算即可得解.【題目詳解】解:因為,所以,又,所以,又,解得.故選:C.【答案點睛】本題考查了等比數(shù)列基本量的求法,屬基礎(chǔ)題.2、D【答案解析】對于,利用拋物線的定義,利用可判斷;對于,設(shè)直線的方程為,與拋物線聯(lián)立,用坐標(biāo)表示直線與直線的斜率乘積,即可判斷;對于,將代入拋物線的方程可得,從而,利用韋達(dá)定理可得,再由,可用m表示,線段的中垂線與軸的交點(即圓心)橫坐標(biāo)為,可得a,即可判斷.【題目詳解】如圖,設(shè)為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點設(shè),到準(zhǔn)線的距離分別為,的半徑為,點到準(zhǔn)線的距離為,顯然,三點不共線,則所以正確由題意可設(shè)直線的方程為,代入拋物線的方程,有

10、設(shè)點,的坐標(biāo)分別為,則,所以則直線與直線的斜率乘積為所以正確將代入拋物線的方程可得,從而,根據(jù)拋物線的對稱性可知,兩點關(guān)于軸對稱,所以過點,的圓的圓心在軸上由上,有,則所以,線段的中垂線與軸的交點(即圓心)橫坐標(biāo)為,所以于是,代入,得,所以所以正確故選:D【答案點睛】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于較難題.3、A【答案解析】根據(jù)三角函數(shù)的定義,求得,再由正弦的倍角公式,即可求解.【題目詳解】由題意,點是角的終邊上一點,根據(jù)三角函數(shù)的定義,可得,則,故選A.【答案點睛】本題主要考查了三角函數(shù)的定義和正弦的倍角公式的化簡、求值,其中解答中根據(jù)

11、三角函數(shù)的定義和正弦的倍角公式,準(zhǔn)確化簡、計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.4、D【答案解析】設(shè),可得,構(gòu)造()22,結(jié)合,可得,根據(jù)向量減法的模長不等式可得解.【題目詳解】設(shè),則,()22|224,所以可得:,配方可得,所以,又 則0,2故選:D【答案點睛】本題考查了向量的運算綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.5、D【答案解析】根據(jù)異面直線的判定定理、定義和性質(zhì),結(jié)合線面垂直的關(guān)系,對選項中的命題判斷.【題目詳解】A.假設(shè)直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾, 故正確.B. 根據(jù)異面直線的性質(zhì)知,過只有唯一平面與平行

12、,故正確.C. 根據(jù)過一點有且只有一個平面與已知直線垂直知,故正確.D. 根據(jù)異面直線的性質(zhì)知,過不一定能作一平面與垂直,故錯誤.故選:D【答案點睛】本題主要考查異面直線的定義,性質(zhì)以及線面關(guān)系,還考查了理解辨析的能力,屬于中檔題.6、A【答案解析】由題意找出滿足恰好第三次就停止摸球的情況,用滿足恰好第三次就停止摸球的情況數(shù)比20即可得解.【題目詳解】由題意可知當(dāng)1,2同時出現(xiàn)時即停止摸球,則滿足恰好第三次就停止摸球的情況共有五種:142,112,241,142,412.則恰好第三次就停止摸球的概率為.故選:A.【答案點睛】本題考查了簡單隨機抽樣中隨機數(shù)的應(yīng)用和古典概型概率的計算,屬于基礎(chǔ)題.

13、7、C【答案解析】先根據(jù)組合數(shù)計算出所有的情況數(shù),再根據(jù)“3個數(shù)中至少有2個陽數(shù)且能構(gòu)成等差數(shù)列”列舉得到滿足條件的情況,由此可求解出對應(yīng)的概率.【題目詳解】所有的情況數(shù)有:種,3個數(shù)中至少有2個陽數(shù)且能構(gòu)成等差數(shù)列的情況有:,共種,所以目標(biāo)事件的概率.故選:C.【答案點睛】本題考查概率與等差數(shù)列的綜合,涉及到背景文化知識,難度一般.求解該類問題可通過古典概型的概率求解方法進(jìn)行分析;當(dāng)情況數(shù)較多時,可考慮用排列數(shù)、組合數(shù)去計算.8、B【答案解析】根據(jù)函數(shù)奇偶性,可排除D;求得及,由導(dǎo)函數(shù)符號可判斷在上單調(diào)遞增,即可排除AC選項.【題目詳解】函數(shù)易知為奇函數(shù),故排除D.又,易知當(dāng)時,;又當(dāng)時,故

14、在上單調(diào)遞增,所以,綜上,時,即單調(diào)遞增.又為奇函數(shù),所以在上單調(diào)遞增,故排除A,C.故選:B【答案點睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,導(dǎo)函數(shù)性質(zhì)與函數(shù)圖象關(guān)系,屬于中檔題.9、C【答案解析】判斷圓心與直線的關(guān)系,確定直線,關(guān)于直線對稱的充要條件是與直線垂直,從而等于到直線的距離,由切線性質(zhì)求出,得,從而得【題目詳解】如圖,設(shè)圓的圓心為,半徑為,點不在直線上,要滿足直線,關(guān)于直線對稱,則必垂直于直線,設(shè),則,,故選:C【答案點睛】本題考查直線與圓的位置關(guān)系,考查直線的對稱性,解題關(guān)鍵是由圓的兩條切線關(guān)于直線對稱,得出與直線垂直,從而得就是圓心到直線的距離,這樣在直角三角形中可求得角10

15、、B【答案解析】利用三角函數(shù)的性質(zhì),逐個判斷即可求出【題目詳解】因為,所以是的一個周期,正確;因為,所以在上不單調(diào)遞增,錯誤;因為,所以是偶函數(shù),又是的一個周期,所以可以只考慮時,的值域當(dāng)時,在上單調(diào)遞增,所以,的值域為,錯誤;綜上,正確的個數(shù)只有一個,故選B【答案點睛】本題主要考查三角函數(shù)的性質(zhì)應(yīng)用11、A【答案解析】基本事件總數(shù),利用列舉法求出其和等于11包含的基本事件有4個,由此能求出其和等于11的概率【題目詳解】解:從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),基本事件總數(shù),其和等于11包含的基本事件有:,共4個,其和等于的概率故選:【答案點睛】本題考查概率的求法,考查古典概型等基礎(chǔ)知識,

16、考查運算求解能力,屬于基礎(chǔ)題12、B【答案解析】求出圓心,代入漸近線方程,找到的關(guān)系,即可求解.【題目詳解】解:,一條漸近線,故選:B【答案點睛】利用的關(guān)系求雙曲線的離心率,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【答案解析】按照“角”的位置分類,分“角”在兩端,在中間,以及在第二個或第四個位置上,即可求出.【題目詳解】若“角”在兩端,則宮、羽兩音階一定在角音階同側(cè),此時有種;若“角”在中間,則不可能出現(xiàn)宮、羽兩音階不相鄰且在角音階的同側(cè);若“角”在第二個或第四個位置上,則有種;綜上,共有種.故答案為:1【答案點睛】本題主要考查利用排列知識解決實際問題,涉及分步計數(shù)乘

17、法原理和分類計數(shù)加法原理的應(yīng)用,意在考查學(xué)生分類討論思想的應(yīng)用和綜合運用知識的能力,屬于基礎(chǔ)題.14、【答案解析】二面角平面角為,點Q到底面的距離為,點Q到定直線得距離為d,則.再由點Q到底面的距離與到點P的距離之比為正常數(shù)k,可得,由此可得,則由可求k值.【題目詳解】解:如圖,設(shè)二面角平面角為,點Q到底面的距離為,點Q到定直線的距離為d,則,即.點Q到底面的距離與到點P的距離之比為正常數(shù)k,則,動點Q的軌跡是拋物線,即則.二面角的平面角的余弦值為解得:().故答案為:.【答案點睛】本題考查了四棱錐的結(jié)構(gòu)特征,由四棱錐的側(cè)面與底面的夾角求參數(shù)值,屬于中檔題.15、1 【答案解析】由正弦定理,結(jié)

18、合,可求出;由三角形面積公式以及角A的范圍,即可求出面積的最大值.【題目詳解】因為,所以由正弦定理可得,所以;所以,當(dāng),即時,三角形面積最大.故答案為(1). 1 (2). 【答案點睛】本題主要考查解三角形的問題,熟記正弦定理以及三角形面積公式即可求解,屬于基礎(chǔ)題型.16、【答案解析】由,根據(jù)正弦定理“邊化角”,可得,根據(jù)余弦定理,結(jié)合已知聯(lián)立方程組,即可求得角.【題目詳解】根據(jù)正弦定理:可得根據(jù)余弦定理:由已知可得:故可聯(lián)立方程:解得:.由故答案為:.【答案點睛】本題主要考查了求三角形的一個內(nèi)角,解題關(guān)鍵是掌握由正弦定理“邊化角”的方法和余弦定理公式,考查了分析能力和計算能力,屬于中檔題.三

19、、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【答案解析】(1)要證明平面平面BDE,只需在平面內(nèi)找一條直線垂直平面BDE即可;(2)以O(shè)為坐標(biāo)原點,OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標(biāo)系,分別求出平面BEF的法向量,平面的法向量,算出即可.【題目詳解】(1)平面ABCD,平面ABCD.又底面ABCD是菱形,.,平面BDE,設(shè)AC,BD交于O,取BE的中點G,連FG,OG,四邊形OCFG是平行四邊形,平面BDE平面BDE,又因平面BEF,平面平面BDE.(2)以O(shè)為坐標(biāo)原點,OA,OB,OG所在直線分別為x、y、z軸建立如圖

20、空間直角坐標(biāo)系BE與平面ABCD所成的角為,.,設(shè)平面BEF的法向量為,設(shè)平面的法向量設(shè)二面角的大小為.【答案點睛】本題考查線面垂直證面面垂直、面面所成角的計算,考查學(xué)生的計算能力,解決此類問題最關(guān)鍵是準(zhǔn)確寫出點的坐標(biāo),是一道中檔題.18、(1);(2)【答案解析】(1)化簡得到,取,解得答案.(2),解得,根據(jù)余弦定理得到,再用一次余弦定理解得答案.【題目詳解】(1).取,解得.(2),因為, 故,.根據(jù)余弦定理:,.【答案點睛】本題考查了三角恒等變換,三角函數(shù)單調(diào)性,余弦定理,意在考查學(xué)生對于三角函數(shù)知識的綜合應(yīng)用.19、(1) ; (2).【答案解析】(1)由正弦定理化簡已知等式可得sinBcosAsinAsinB1,結(jié)合sinB1,可求tanA,結(jié)合范圍A(1,),可得A的值;(2)由已知可求C,可求b的值,根據(jù)三角形的面積公式即可計算得解【題目詳解】(1)bcosAasinB1由正弦定理可得:sinBcosAsinAsinB1,sinB1,cosAsinA,tanA,A(1,),A;(2)a2,B,A,C,根據(jù)正弦定理得到 b6,SABCab6【答案點睛】本題主要考查了正弦定理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論