全等三角形問題中常見的輔助線的作法_第1頁
全等三角形問題中常見的輔助線的作法_第2頁
全等三角形問題中常見的輔助線的作法_第3頁
全等三角形問題中常見的輔助線的作法_第4頁
全等三角形問題中常見的輔助線的作法_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、16/16全等三角形問題中常見的輔助線的作法20常見輔助線的作法有以下幾種:遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”遇到角平分線,能夠自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點常常是角平分線的性質(zhì)定理或逆定理過圖形上某一點作特定的平分線,構(gòu)造全等三角形,利用的思維模式是全等變換中的“平移”或“翻轉(zhuǎn)折疊”截長法與補短法,具體做法是在某條線段上截取一條線段與特定線段相等,或是將某條線段延長,是之

2、與特定線段相等,再利用三角形全等的有關(guān)性質(zhì)加以講明這種作法,適合于證明線段的和、差、倍、分等類的題目專門方法:在求有關(guān)三角形的定值一類的問題時,常把某點到原三角形各頂點的線段連接起來,利用三角形面積的知識解答一、倍長中線(線段)造全等例1、(“希望杯”試題)已知,如圖ABC中,AB=5,AC=3,則中線AD的取值范圍是_.例2、如圖,ABC中,E、F分不在AB、AC上,DEDF,D是中點,試比較BE+CF與EF的大小.例3、如圖,ABC中,BD=DC=AC,E是DC的中點,求證:AD平分BAE.應(yīng)用:1、(09崇文二模)以的兩邊AB、AC為腰分不向外作等腰Rt和等腰Rt,連接DE,M、N分不是

3、BC、DE的中點探究:AM與DE的位置關(guān)系及數(shù)量關(guān)系(1)如圖 當(dāng)為直角三角形時,AM與DE的位置關(guān)系是 ,線段AM與DE的數(shù)量關(guān)系是 ;(2)將圖中的等腰Rt繞點A沿逆時針方向旋轉(zhuǎn)(0AD+AE.四、借助角平分線造全等1、如圖,已知在ABC中,B=60,ABC的角平分線AD,CE相交于點O,求證:OE=OD2、如圖,ABC中,AD平分BAC,DGBC且平分BC,DEAB于E,DFAC于F. (1)講明BE=CF的理由;(2)假如AB=,AC=,求AE、BE的長.應(yīng)用:1、如圖,OP是MON的平分線,請你利用該圖形畫一對以O(shè)P所在直線為對稱軸的全等三角形。請你參考那個作全等三角形的方法,解答下

4、列問題:(1)如圖,在ABC中,ACB是直角,B=60,AD、CE分不是BAC、BCA的平分線,AD、CE相交于點F。請你推斷并寫出FE與FD之間的數(shù)量關(guān)系;(第23題圖)OPAMNEB(第23題圖)OPAMNEBCDFACEFBD圖圖圖五、旋轉(zhuǎn)例1 正方形ABCD中,E為BC上的一點,F(xiàn)為CD上的一點,BE+DF=EF,求EAF的度數(shù). 例2 D為等腰斜邊AB的中點,DMDN,DM,DN分不交BC,CA于點E,F。當(dāng)繞點D轉(zhuǎn)動時,求證DE=DF。若AB=2,求四邊形DECF的面積。例3 如圖,是邊長為3的等邊三角形,是等腰三角形,且,以D為頂點做一個角,使其兩邊分不交AB于點M,交AC于點N

5、,連接MN,則的周長為 ;應(yīng)用:1、已知四邊形中,繞點旋轉(zhuǎn),它的兩邊分不交(或它們的延長線)于當(dāng)繞點旋轉(zhuǎn)到時(如圖1),易證當(dāng)繞點旋轉(zhuǎn)到時,在圖2和圖3這兩種情況下,上述結(jié)論是否成立?若成立,請給予證明;若不成立,線段,又有如何樣的數(shù)量關(guān)系?請寫出你的猜想,不需證明(圖(圖1)(圖2)(圖3)2、(西城09年一模)已知:PA=,PB=4,以AB為一邊作正方形ABCD,使P、D兩點落在直線AB的兩側(cè).(1)如圖,當(dāng)APB=45時,求AB及PD的長;(2)當(dāng)APB變化,且其它條件不變時,求PD的最大值,及相應(yīng)APB的大小.3、在等邊的兩邊AB、AC所在直線上分不有兩點M、N,D為外一點,且,BD=DC. 探究:當(dāng)M、N分不在直線AB、AC上移動時,BM、NC、MN之間的數(shù)量關(guān)系及的周長Q與等邊的周長L的關(guān)系圖1 圖2 圖3( = 1 * ROMAN I)如圖1,當(dāng)點M、N邊AB、AC上,且DM=DN時,BM、NC、MN之間的數(shù)量關(guān)系是 ; 現(xiàn)在 ; ( = 2 * ROMAN II)如圖2,點M、N邊AB、AC上,且當(dāng)DMDN時,猜想( = 1 * ROM

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論