




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、本文格式為Word版,下載可任意編輯 展示廣告點(diǎn)擊率預(yù)估方法研究 Abstract With the rapid development of the Internet, online advertising acts a pivotal part in the Internet in our daily life and it has become the most popular approach to do brand promotion and product marketing for the advertiser. Accurate click-through rate (CTR)
2、 prediction is the most important part of online advertising. Improving the accuracy of the ads CTR estimation can not only benefit to advertisers, but also improve user experience. Many traditional click through rate prediction methods, such as logistic regression, have been applied to advertising
3、click rate prediction system and achieved good results. Furthermore, it has been large-scale deployed in the industry. Recently, the deep learning technology has achieved great success in multiply fields of Natural Language Processing and Computer Vision, such as Textual Entailment, Text Summarizati
4、on, Image Generation and so on. Meanwhile, a number of deep learning models right now have been used in personalized recommender system and CTR prediction and their model structures are similar. Both of them reduce the dimension of the feature by vectorization, then utilize nonlinear operation to ex
5、tract the feature combination, and calculate nonlinear relationship between the features and the click rate through by neural network. The content of this paper of the following three main aspects: (1) Ensemble Learning by multiple traditional machine learning models based CTR model. We first do fea
6、ture engineering on two large-scale real-world display advertising datasets manually and extract high-order combination feature by GBDT. Then we calculate CTR by mature machine learning models such as logistic regression and factorization machine. Then we utilize ensemble learning base on multiple s
7、ingle models. Finally, we calculate the result of ensemble learning method. (2) Advance deep learning model based CTR model. We use deep neural network and recurrent neural network to do click-through rate prediction. We try to combine the features extracted from feature engineering and get the inpu
8、t of deep neural network through feature hashing and feature connection. Finally, we calculate the result of advance deep learning model. (3) Multi-Embedding deep model based CTR model. We propose a novel CTR predicting model, Multi-Embedding Deep Model. We implement deep neural network based and co
9、nvolutional neural network based traditional multi-embedding deep model, and also implement deep neural network based and convolutional neural network based bilinear multi-embedding deep model. which - II - we utilize bilinear matrix to do feature interactions instead of factorization machines. We d
10、esign a system to address the cold-start problem for static data set by combining clustering method and marking rare embedding vectors method. We evaluate the proposed model on IPinYou and Avazu datasets, two large-scale real-world display advertising datasets. Experimental results show that the mod
11、el can improve the estimation performance of ads click-through rate effectively. Keywords:online advertising, click-through rate, deep learning, convolutional neural network, bilinear - III - 目錄 摘要 I ABSTRACT II 第1章緒論 . (1) 1.1課題的來源及研究的目的和意義 (1) 1.1.1 課題的來源 (1) 1.1.2 課題的研究目的和意義 (1) 1.2國內(nèi)外研究現(xiàn)狀 (2) 1.
12、2.1 基于機(jī)器學(xué)習(xí)的點(diǎn)擊率預(yù)估模型研究現(xiàn)狀 (2) 1.2.2 基于深度學(xué)習(xí)的點(diǎn)擊率預(yù)估模型研究現(xiàn)狀 (4) 1.3數(shù)據(jù)集與問題定義 (5) 1.3.1 數(shù)據(jù)集描述 (5) 1.3.2 點(diǎn)擊率預(yù)估的問題定義 (9) 1.3.3 點(diǎn)擊率預(yù)估的評價指標(biāo) (9) 1.3.4 基線系統(tǒng)選擇 (11) 1.4本文的主要研究內(nèi)容 (13) 1.5本文內(nèi)容安排 (14) 第2章基于模型融合的點(diǎn)擊率預(yù)估研究 (15) 2.1引言 (15) 2.2單模型點(diǎn)擊率預(yù)估 (15) 2.2.1 GBDT高階特征組合模型 (15) 2.2.2 FM點(diǎn)擊率預(yù)估模型 (18) 2.2.3 FFM點(diǎn)擊率預(yù)估模型 (19) 2
13、.3集成學(xué)習(xí)點(diǎn)擊率預(yù)估 (20) 2.3.1 強(qiáng)模型融合 (20) 2.3.2 機(jī)器學(xué)習(xí)元算法 (21) 2.4基于模型融合的點(diǎn)擊率預(yù)估模型 (23) 2.5試驗(yàn)結(jié)果與分析 (24) 2.5.1 模型參數(shù)設(shè)置 (24) 2.5.2 試驗(yàn)結(jié)果比較分析 (25) 2.6本章小結(jié) (27) - IV - 第3章基于深度學(xué)習(xí)的點(diǎn)擊率預(yù)估研究 (29) 3.1引言 (29) 3.2基于傳統(tǒng)深度模型的點(diǎn)擊率預(yù)估研究 (29) 3.2.1 激活函數(shù) (29) 3.2.2 Dropout (30) 3.2.3 Batch Normalization (31) 3.2.4 反向傳播算法 (33) 3.2.5 基
14、于傳統(tǒng)深度神經(jīng)網(wǎng)絡(luò)的點(diǎn)擊率預(yù)估模型 (34) 3.3基于循環(huán)神經(jīng)網(wǎng)絡(luò)的點(diǎn)擊率預(yù)估研究 (34) 3.3.1 循環(huán)神經(jīng)網(wǎng)絡(luò) (35) 3.3.2 長短期記憶網(wǎng)絡(luò) (36) 3.3.3 門控循環(huán)單元 (37) 3.3.4 雙向循環(huán)神經(jīng)網(wǎng)絡(luò) (38) 3.3.5 基于時間的反向傳播算法 (39) 3.3.6 基于循環(huán)神經(jīng)網(wǎng)絡(luò)的點(diǎn)擊率預(yù)估模型 (40) 3.4淺層特征與深層特征結(jié)合的點(diǎn)擊率預(yù)估模型 (41) 3.5試驗(yàn)結(jié)果與分析 (41) 3.5.1 模型參數(shù)設(shè)置 (42) 3.5.2 試驗(yàn)結(jié)果比較分析 (42) 3.6本章小結(jié) (46) 第4章基于MULTI-EMBEDDING的點(diǎn)擊率預(yù)估研究 (48) 4.1引言 (48) 4.2卷積神經(jīng)網(wǎng)絡(luò)相關(guān)技術(shù)研究 (48) 4.2.1 卷積層 (48) 4.2.2 池化層 (50) 4.3雙線性特征組合 (51) 4.4冷啟動問題模型 (52) 4.5基于傳統(tǒng)M ULTI-E MBEDDING的點(diǎn)擊率預(yù)估模型 (53) 4.5.1 基于深度神經(jīng)網(wǎng)絡(luò)的傳統(tǒng)Multi-Embedding點(diǎn)擊率預(yù)估模型 (53) 4.5.2 基于卷積神經(jīng)網(wǎng)絡(luò)的傳統(tǒng)Multi-Em
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中考英語模刷題擬試卷(含答案)
- 電力電纜敷設(shè)施工方案
- 別墅裝修保潔合同范例
- 代理酒類合同范本
- 個人租房合同范例乙方版本
- 物流行業(yè)安全運(yùn)輸監(jiān)管方案計劃
- 師生互動提升計劃
- 親子溝通與情感交流計劃
- 中學(xué)教育教學(xué)創(chuàng)新計劃
- 《貴州新仁新能源科技有限公司貴州省六枝特區(qū)大壩螢石礦(新建)礦產(chǎn)資源綠色開發(fā)利用方案(三合一)》評審意見
- 2024年消防月全員消防安全知識培訓(xùn)
- 出租車駕駛員從業(yè)資格證考試題庫500道題
- 口腔綜合治療臺用水衛(wèi)生管理規(guī)范
- 年產(chǎn)2500噸苯并三氮唑、2000噸甲基苯并三氮唑技改項(xiàng)目竣工環(huán)保驗(yàn)收監(jiān)測調(diào)查報告
- 高三英語語法填空專項(xiàng)訓(xùn)練100(附答案)及解析
- 《人力資源管理》全套教學(xué)課件
- 4.2 以禮待人 課件-2024-2025學(xué)年統(tǒng)編版道德與法治八年級上冊
- 貴州大學(xué)新型智庫建設(shè)實(shí)施方案
- 項(xiàng)目一任務(wù)一《家宴菜單設(shè)計》課件浙教版初中勞動技術(shù)八年級下冊
- 食品安全自查、從業(yè)人員健康管理、進(jìn)貨查驗(yàn)記錄、食品安全事故處置保證食品安全規(guī)章制度
- 重點(diǎn)流域水環(huán)境綜合治理中央預(yù)算內(nèi)項(xiàng)目申報指南
評論
0/150
提交評論