版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、比值法與特別規(guī)解題(Ratiomethodandunconventionalsolution)CollectedbyoneselfMistakesareunavoidableForreferenceonlyIncaseoferrorPleasecorrectme!ThankyouRatiomethodandunconventionalsolutionGuangzhousevenDuHoushengClassroomteachingisthemainchannelofqualityeducation,andthekeytoqualityeducationistooptimizetheproces
2、sofclassroomteaching,guidestudentstoparticipateactivelyinthelearningprocess,learntolearnandbehappytolearnTrulybecomethesubjectoflearningInmathematicsclassroomteachingProblemsolvingteachingisthemostimportantandmostimportantcontentofteachingThinkingactivitiesarefullyreflectedintheprocessofsolvingprobl
3、emsAndfullydevelopedStudentsshouldbeinproblemsolvingteachingLearntothink,learntomakeWedontrequireeveryteacherandstudenttodoadvancedresearch,saysPolya,thegreatestmatheducationthinkerofthecenturyHoweverMathematicalproblems,unconventionalsolutions,andrealcreativeworkWhatweneedtomasterisnotknowledgegain
4、edbymemoryaloneItistherealknowledgethatisreadilyavailableinsolvinginterestingproblemsThatistosayInproblemsolvingteachingUnconventionalsolutionscanbeusedtostimulatecreativityImprovetheenthusiasmandinitiativeofstudentsInthesolutionteachingofplanegeometryinjuniorhighschoolRatiomethodCanachievesomegeome
5、tricproblemsofunconventionalsolutionEffectivelyimprovestudentsproblem-solvingabilityArightangledtrianglewith30degreesand45degreesanglesafterstudyingrighttriangleSolvesuchaproblem:RtDeltaABCAngleC=90degreesAngleB=30degreesIfBC=50SeekthelengthofthebevelABMoststudentswillsetAB=xAC=ThereforeListequation
6、s:XieAB=DonttrytoseethePythagoreantheoremThestudentthoughtforamomentIfABisset,XCOS30=thismethodthanbyusingthePythagoreantheoremofgoodBecausethereisnoneedtosolvetheequationoftwovariablesAskthestudentagain:canyouseeAB=atonce?NoBecausethenumberistoobigChangeasmallernumberSuchasBC=3IthinkIcanusemymental
7、arithmetictofigureoutAB=2AdlocumThePythagoreantheoremandtrigonometricfunctionsaretheconventionaltextbooksolutionrequirementsByusingtheratiorule,averysimpleandunconventionalmethodcanbeobtainedSoIcametofindthescalewiththestudentsItsreallyeasyFromsmalltolargeTheratioofthethreesidesis1:2Ifashortstraight
8、edgeisknown,aisusedYes,a:a:2aThereforeJustknowtheshortstraightedgeaTherestofthetwosidesshouldbeaand2A;knowthatthebevelisa?TheothertwosidesareandInordertomasterthismethodJusttenminutesofpractice:shortandlongMultipliedbymultiples(and2);knownlength;shortdurationDividedbymultiples(and2)SimilarproblemsWa
9、nttoseeitallatonceAseasyasbreathingSowecallthisexpirationComeassoonasyoucallOpenyourmouth(asbelow)OfcourseTheisoscelesrighttriangleisthesameMultipliedbyordividedbymultiplesSimpler!(picturebelow)Howusefulisthisexhalation?Letshaveatry:Example1.,asshowninFig.KnownDC=3SeekthelengthofeachlinesegmentSolut
10、ion:AX30degrees,45degreesB50,D,X,C,BC=XCalloutall!Example2.,asshowninFig.KnownBD=50FindthelengthoflineACSolution:letAC=xThenDC=xBC=xSo50+x=xX=50/(-1)=25(+1)ThisisobviouslybetterthanusingtrigonometricfunctionsAAx30degrees45degreesB,x,D,x,CExample3.,asshowninFig.KnownBC=3+FindthelengthoflineABandACSol
11、ution:letAD=DC=xThenBD=xGotx+x=3+x=1AB=2x=2=AC=xExample4.,asshowninFig.RtDeltaABCAngleC=90degreesAngleB=15degreesRequest:tg15degreesvalueSolution:asADTheangleADC=30degreesLetAC=1ThenAD=BD=2DC=BC=2+tg15=2-*Cantheybeextended?OtherspecialrightangledtrianglesseemtobeokForexample,therearemorethanPythagor
12、eannumbertrianglevalue3:4:5;5:12:13;7:24:25WaitAnyrightangledtriangle?No,istherearatio?Giveitatry:Setbevelto1Yes,thebeveledgeisaYes:Setthestraightedgeto1Yes,thestraightedgeisaYes:Example5.takeadvantageofthegraphaboveBythePythagoreantheoremProvablesin2A+cos2A=1(squarerelation)DefinedbytangentsProvabl
13、etgA=(ratiorelation)ByA+B=90degreesGetsinA=cosBTgA=ctgB(mutualredundancy)Example6.,asshowninFig.RtDeltaABCAngleD=90degreesAlpha/B=Beta/ACD=BC=mForAD(thisisthepromotionofexample6)Solution:letAD=xCD=xctgbetaBD=xctgalpham+xctg=xctgalphabetax=InthemiddleschoolmathematicsteachingmaterialTherearesomanysub
14、jectswith30degreesand45anglesBreatheoutmakesusfast,accurateandrelaxedTwo.Theunconventionalsolutionofarclengthandsectorialarea1.Theteacheraskedthestudent,length?Yes.whatistheformulaforarcHowdidyougetit?Becauseofthecenterofthecircleat360degrees,thearcisthecircumferenceofthecircleTherefore,thecenteroft
15、hearcat1degreesisthelengthofthearcThus,thecenterofthearcatndegreesisthelengthofthearcTheteacheraskedthestudent,whatstheformulaforsectorialarea?Therearetwo.Sfan=andSfan=LRThelatterformulaisusedwhenthearclengthandradiusareknownWiththesetwosetsofformulasStudentsknowthecenterofthecircleandtheradiusThere
16、isnodifficultyinfindingthelengthofthearcandtheareaofthefanBut.VeryboringItsnotfunnyatallThestudentsaidAndImafraiditllsoonbeforgottenTheteacherthenasked,canyouexportthisresultinanyotherway?Thestudentsaid,howcouldthatbe?CurvilinearcalculationInadditiontothecircleperimeterandthecircleareaformulaWedonth
17、aveanyotherwayYoucanexportformulaslikethisIthinkitsverycleverTheteachersaid,ifyouknow,thecircumferenceofacircleis16PI.Thearcofthefanpairis2piCanyoutellthecenterofthefan,theangle,thedegree,andthefan-shapedareaatonce?Canyoubreatheout?Itsabitdifficult.ThereforeTheteacherandthestudentgobacktothedefiniti
18、onAllrightThedefinitionisactuallytousetheratiotoobtaintheformulaItstheratioagain!ThismeansInasectorThecenteranglenispartPerigonisallispartofthearclength;Thecircumferenceisall;thefanareaispartTheroundareaisthewholeIfyouset=kthatInthen,L,sthesepartsTherespartof=kallThiskiseasytobreatheoutAndthiswholei
19、salsoveryfamiliarThereforeThetitleabovecanbeexhaled:thearclengthis2piThecircumferenceofthecircleis16piSok=?Thecenterangleis=45(degree)FanareashouldbefirstroundareaTheperimeteris16piRadiusis8Sotheareaofthecircleis64piThefanareais*64PI=8piJustalittlemoreskilledItseasiertobreatheoutTheteacherspent10mor
20、eminuteswithhisstudents:AnglenRatioKN:360RadiusrArclengthLK.2RpiFanareasK.R2pidegreesRdegreesRdegreesRdegreesRdegreesRdegreesRdegreesRdegreesRdegreesRdegreesRItsmoreinterestingnowAndWedonthavetorelyonformulasJustrememberthepartandthewholerelationshipWhenwillitbecalculated?ThestudentsaidTheteachersai
21、d,actually.TheformulaisalsoamongtheseratiosItseasytosee,thestudentsaid:Thatis,s=lrActualcalculationtimeUsingn=k*360L=k*2piRS=k*PIR2ObviouslyfastandaccurateTheteachersaid,canyouapplythisresulttootherproblems?Thestudentlookedatthefanagain.theresachordhere,ABItshouldbeapartofaregularpolygoninscribedina
22、circleAndbowItisacircleminusthepartoftheremainingareaoftheregularpolygonThereareaABCareaItispartoftheareaofaregularpolygoninscribedinacircleTheirratiosarealsoequaltoKIfconcentriccirclesareusedGetaringThentheratiooftheareaoftheshadowtotheareaoftheringisalsoKThereisaprobleminthebook(geometrythird,187p
23、ages,11questions)WetrytocomputewiththisresultcasesofknowntwoconcentriccircleswitharadiusoftwowastruncatedbytheAB(-)=10PIcmCD(-)=6PIcmAC=12cmagainTheareaoftheshadedpartSolution:settwocircleradiiofRandR,respectivelydoes:Xier=18R=30dreamsk=*(CM)AtthistimeOnestudentsaid,thefigureisabitlikeatrapezoid.Kno
24、wthebottom,bottom,andheightIfusedTheresultisexactlythesame!ThestudentsareveryhappyHowsimpleisthat?!Isitacoincidence?TheteacherdoesntbelieveitThestudentsaid,wecanprobablyproveit.Thestudentsproofisasfollows:Proof:setupWellthen:ThereisS=(R-r)indeedItsliketrapezoidalareaformula!Thearclengthandfanareacan
25、beexhaledSo,cantheareaofthebowbeexhaled?Theareaoftheisoscelesrighttriangleis=a2Theareaofanequilateraltriangle=Thearcuateareaatleast60degrees,90degrees,and120degreesarcscanalsobeexhaledAslongasthefanareaandtheareaofthetrianglearerespectivelyexhaled(inabowof120degrees)TheAOBareaisreplacedbytheequilate
26、ralDeltaOBCarea)Inthecalculationofthearchareaandtheareaofthecompositefigure(shadowpart)TheincidenceofthesearchareasHighTheconnotationofratioisbroadandprofoundTheratiomethodisconciseandharmoniousUtilizationratioTheresultsobtainedareoftenthemostintuitiveandpracticalMiddleschoolmathematicsteachingmater
27、ialMethodsandmaterialsthatenableustobecreativeItisfarmorethantheratiomethodasyou?MaterialcanbefoundalmosteverywhereProduceinspirationthattriggersourcreativityTheunconventionalsolutiontomathematicalproblemsThree.Understandingofunconventionalsolutionswhataretheunconventionalsolutionstomathematicalprob
28、lems?Itseemsthattheteachersfeelthatitisself-evidentButIcantsayitsdefinitionWhatdidnotreadthecompletediscussionofthisproblem(includingteachingsyllabus,teachingreference,journalpapers,relevantteachingworks)MypersonalunderstandingThisisbecauseunconventionalsolutionshaverelativityTherearethreesourcesofg
29、eneralproblem-solvingmethods:oneisthemethodthatmustbemasteredbyteachingmaterialsAsthePythagoreantheorem,quadraticequationwithoneunknowndistributionmethod,crossmultiplication;twoisthroughthemethodofsolvingaclassofproblemsSuchasformulaetc.Thethreeislogic,strictnessandprecisionMiddleschoolalgebraandgeo
30、metrytextbooksAlmosteveryunitoflearningprocessThemethodofsolvingthisunitisgivenbytheteachingmaterialAndaskstudentstomasteritTheseproblem-solvingmethodsItformstheso-calledregularproblem-solvingmethodsProblemsolvingmethodsthatvaryfromtextbookrequirementsItcanalsobecalledunconventionalproblem-solvingme
31、thodShouldseeConventionalandunconventionalcanbetransformedintoeachotherUnconventionalactuallystemsfromtheconventionalInthelegendofGauss,forexampleFrom1to100andGaussusedthemethodofarithmeticprogressionsummationThisisunconventionalforschoolchildrenAndinthechapterofaseriesofstudiesItsstandardpracticeAn
32、othermethodofsolvingproblems,suchascombinationofnumbersandshapesInsomefunctionalproblemsandinthecomplexnumberproblemItsunconventionalInanalyticgeometryIsthemosttypicalroutineAgain,asmentionedabove,arectangulartrianglewithaspecialangleiscalculatedbytheratiomethodOnceinteaching,studentsshouldbevalueda
33、ndmasteredIthasbecomearoutineproblemsolvingmethodEventhefirstroutineItmaybebecausethereisnostrictlinebetweenregularsolutionsandunconventionalsolutionsTherefore,unconventionalproblem-solvingisdifficulttodefineItmaybeunderstoodthatasimplemethodofsolvingproblemsthatisnotrequiredbytheteachingmaterialand
34、thattheteacherorthestudentusuallydoesnotexpectisunconventionalSimplicityisemphasizedhereWithoutsimplicityImafraiditshardforeveryonetoadmitthattheyareunconventionalTheessenceofunconventionalproblemsolvingistheoptimizationofproblemsolvingGausssaid,goforamostbeautifulandconciseproof.Itwasthemainmotivat
35、ionthatattractedmetostudyitSimplicityisanimportantsymbolofmathematicalbeautySimplyreferstothefactthatmanyfactsaresummedupinsimpleformulasEuclidsgeometryoriginallystartedwith36definitionsand19axioms467propositionsareobtainedHavecompletedtheestablishmentofasubjectExactly100yearsagoInnineteenthCentury,
36、Hilbert,thegreatestmathematician,publishedhisepoch-makingessay,mathematicsproblematthesecondinternationalmathematicianCongressinParisThemainpartofthethesisputsforward23mathematicalproblemsthatshouldbestudiedandbrokendowninanewcenturyLessthan500wordsAparagonofbrevityKleinsaid:newwaystosolveoldproblem
37、s.CanpromotethedevelopmentofMathematicsUnconventionalsolutionsareactuallynewwaysofsolvingoldproblemsteachingofunconventionalproblemsolvingTheteachermustfirstpassthroughhimselfTheinnovationandspiritofthemathematicsteacheristhemodelofthestudentsSometeachersplacetoomuchemphasisonthemasteryandmasteryofB
38、ookMethodsNotonlydidnotthinkofunconventionalsolutionsNotevenstudentscanuseitQuiteafewstudentstalkedaboutsomemajorexamsSomeofthesubjectsaredifficultAlthoughsomesolutionshavebeenthoughtoutEvengottherightsolutionButthemethodsusedaredifferentfromthoseinbooksSoIdarenotwriteitoutSomehavebeenwrittenoutButs
39、ometeachersdonotgivepointsmarkingInTeachingSometeachersgivetheirstudentsananalysisoftheproblemanduseunconventionalproblem-solvingmethodsStudentsoftenask,doyougivepointsinthistest?Becausethatsnotwhattheteachingmaterialdoes!SometeacherstalkabouttrigonometricfunctionsTeachstudentstostudythepropertiesof
40、trigonometricfunctionsbyunitcircles(includingtheevaluationoftrigonometricfunctions,solutionsoftrigonometricequations,symbolsoftrigonometricfunctions,periodicity,definitions,domains,ranges,etc.)ButitwascriticizedbyotherteachersThatinterfereswithnormalteachingItisunfavorableforstudentstomastertheknowl
41、edgeoftextbooksDonotconformtotherequirementsofteachingmaterials,etc.ItshardtoimagineAmanwhostickstohisownrulesdoesnotdaretoteachmoreAteacherwhodoesnotdiscussmultiplesolutionsandunconventionalsolutionsAbletoteachcreativestudentsStudentscreativitycomesfromteachersdemonstrationandencouragementThekeytot
42、hedevelopmentofunconventionalproblem-solvingabilityistheteachertheformationofstudentsunconventionalproblem-solvingabilityShouldseeTheroutineisthefoundationIsthepremiseUnconventionalistoimproveAbreakthrough;aconventionisgeneralUnconventionalisparticularityOnlyproficiencyinavarietyofconventionalproblem-solvingmethodsCanbesynthesized,compared,summarizedGetunconventionalproblem-solvingmethodsTheessenceoftheunconventionalsolutionistooptimizetheproblemTheconfirmationoftheoptimizationisestablishedincomparisonThereisonlyonesolutiontoaquestionItdoe
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版小額貸款擔(dān)保及貸款利率調(diào)整及貸款條件變更及擔(dān)保人責(zé)任合同3篇
- 二零二五年度木工耗材供應(yīng)與配送合同4篇
- 01 修辭手法題的應(yīng)對(duì)策略-高考語(yǔ)文一輪復(fù)習(xí)之核心考點(diǎn)解密
- 七年級(jí)道德與法治試卷
- 信用激勵(lì)措施考核試卷
- 二零二五年度鋼材行業(yè)質(zhì)量標(biāo)準(zhǔn)制定與實(shí)施合同3篇
- 二零二五年度陵園墓碑雕刻技藝傳承合同4篇
- 2025版品牌視覺(jué)設(shè)計(jì)制作合同范本2篇
- 《菜根譚名句》課件
- 2025年因擅自公開(kāi)他人隱私賠償協(xié)議
- 課題申報(bào)書(shū):GenAI賦能新質(zhì)人才培養(yǎng)的生成式學(xué)習(xí)設(shè)計(jì)研究
- 駱駝祥子-(一)-劇本
- 全國(guó)醫(yī)院數(shù)量統(tǒng)計(jì)
- 《中國(guó)香文化》課件
- 2024年醫(yī)美行業(yè)社媒平臺(tái)人群趨勢(shì)洞察報(bào)告-醫(yī)美行業(yè)觀察星秀傳媒
- 第六次全國(guó)幽門(mén)螺桿菌感染處理共識(shí)報(bào)告-
- 天津市2023-2024學(xué)年七年級(jí)上學(xué)期期末考試數(shù)學(xué)試題(含答案)
- 經(jīng)濟(jì)學(xué)的思維方式(第13版)
- 盤(pán)錦市重點(diǎn)中學(xué)2024年中考英語(yǔ)全真模擬試卷含答案
- 手衛(wèi)生依從性調(diào)查表
- 湖北教育出版社四年級(jí)下冊(cè)信息技術(shù)教案
評(píng)論
0/150
提交評(píng)論