信號(hào)與系統(tǒng)奧本海默原版第二章-課件_第1頁(yè)
信號(hào)與系統(tǒng)奧本海默原版第二章-課件_第2頁(yè)
信號(hào)與系統(tǒng)奧本海默原版第二章-課件_第3頁(yè)
信號(hào)與系統(tǒng)奧本海默原版第二章-課件_第4頁(yè)
信號(hào)與系統(tǒng)奧本海默原版第二章-課件_第5頁(yè)
已閱讀5頁(yè),還剩31頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、 2 Linear Time-Invariant Systems2.1 Discrete-time LTI system: The convolution sum2.1.1 The Representation of Discrete-time Signals in Terms of Impulses2. Linear Time-Invariant SystemsIf xn=un, then 1- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2- 2 Linear Time-Invariant Syste 2 Lin

2、ear Time-Invariant Systems2.1.2 The Discrete-time Unit Impulse Response and the Convolution Sum Representation of LTI Systems(1) Unit Impulse(Sample) Response LTIxn=nyn=hn Unit Impulse Response: hn 3- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems(2) Convolution Sum of LTI System LTIx

3、nyn=?Solution:Question: n hnn-k hn-kxkn-k xk hn-k4- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems5- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems6- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems( Convolution Sum )Soor yn = xn * hn(3) Calculation of Conv

4、olution SumTime Inversal: hk h-kTime Shift: h-k hn-kMultiplication: xkhn-kSumming: Example 2.1 2.2 2.3 2.4 2.57- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.2 Continuous-time LTI system: The convolution integral2.2.1 The Representation of Continuous-time Signals in Terms of Impuls

5、esDefine We have the expression: Therefore: 8- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems9- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systemsor 10- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.2.2 The Continuous-time Unit impulse Response and the conv

6、olution Integral Representation of LTI Systems(1) Unit Impulse Response LTIx(t)=(t)y(t)=h(t)(2) The Convolution of LTI System LTIx(t)y(t)=?11- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant SystemsA. LTI(t)h(t)x(t)y(t)=?Because of So,we can get ( Convolution Integral ) or y(t) = x(t) * h(t) 1

7、2- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant SystemsB. or y(t) = x(t) * h(t) LTI(t)h(t)(t) h(t)( Convolution Integral ) 13- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems14- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems(3) Computation of Convolution Integra

8、l Time Inversal: h() h(- )Time Shift: h(-) h(t- )Multiplication: x()h(t- )Integrating: Example 2.6 2.815- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3 Properties of Linear Time Invariant SystemConvolution formula:h(t)x(t)y(t)=x(t)*h(t)hnxnyn=xn*hn16- 2 Linear Time-Invariant Syste

9、 2 Linear Time-Invariant Systems2.3.1 The Commutative PropertyDiscrete time: xn*hn=hn*xnContinuous time: x(t)*h(t)=h(t)*x(t)h(t)x(t)y(t)=x(t)*h(t)x(t)h(t)y(t)=h(t)*x(t)17- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.2 The Distributive PropertyDiscrete time: xn*h1n+h2n=xn*h1n+xn*

10、h2nContinuous time: x(t)*h1(t)+h2(t)=x(t)*h1(t)+x(t)*h2(t)h1(t)+h2(t)x(t)y(t)=x(t)*h1(t)+h2(t)h1(t)x(t)y(t)=x(t)*h1(t)+x(t)*h2(t)h2(t)Example 2.1018- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.3 The Associative PropertyDiscrete time: xn*h1n*h2n=xn*h1n*h2nContinuous time: x(t)*h

11、1(t)*h2(t)=x(t)*h1(t)*h2(t)h1(t)*h2(t)x(t)y(t)=x(t)*h1(t)*h2(t)h1(t)x(t)y(t)=x(t)*h1(t)*h2(t)h2(t)19- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.4 LTI system with and without MemoryMemoryless system: Discrete time: yn=kxn, hn=kn Continuous time: y(t)=kx(t), h(t)=k (t)k (t) x(t)

12、y(t)=kx(t)=x(t)*k(t)k n xnyn=kxn=xn*knImply that: x(t)* (t)=x(t) and xn* n=xn20- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.5 Invertibility of LTI systemOriginal system: h(t)Reverse system: h1(t)(t) x(t)x(t)*(t)=x(t)So, for the invertible system: h(t)*h1(t)=(t) or hn*h1n=nh(t)

13、x(t)x(t)h1(t) Example 2.11 2.1221- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.6 Causality for LTI systemDiscrete time system satisfy the condition: hn=0 for n0Continuous time system satisfy the condition: h(t)=0 for t022- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Sy

14、stems2.3.7 Stability for LTI system Definition of stability: Every bounded input produces a bounded output. Discrete time system:If |xn|B, the condition for |yn|A is23- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant SystemsContinuous time system:If |x(t)|B, the condition for |y(t)|A isExample

15、 2.1324- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.8 The Unit Step Response of LTI systemDiscrete time system:hn nhnunsn=un*hnContinuous time system:h(t) (t)h(t)u(t)s(t)=u(t)*h(t)25- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.4 Causal LTI Systems Described

16、by Differential and Difference EquationDiscrete time system: Differential EquationContinuous time system: Difference Equation26- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.4.1 Linear Constant-Coefficient Differential EquationA general Nth-order linear constant-coefficient differe

17、ntial equation:orand initial condition: y(t0), y(t0), , y(N-1)(t0) ( N values )27- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.4.2 Linear Constant-Coefficient Difference EquationA general Nth-order linear constant-coefficient difference equation:orand initial condition: y0, y-1, ,

18、 y-(N-1) ( N values )Example 2.1528- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.4.3 Block Diagram Representations of First-order Systems Described by Differential and Difference Equation(1) Dicrete time system Basic elements: A. An adder B. Multiplication by a coefficient C. An unit delay29- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant SystemsBasic elements: 30- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant SystemsExample: yn+ayn-1=bxn 31- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems(2) Contin

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論