




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、 2 Linear Time-Invariant Systems2.1 Discrete-time LTI system: The convolution sum2.1.1 The Representation of Discrete-time Signals in Terms of Impulses2. Linear Time-Invariant SystemsIf xn=un, then 1- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2- 2 Linear Time-Invariant Syste 2 Lin
2、ear Time-Invariant Systems2.1.2 The Discrete-time Unit Impulse Response and the Convolution Sum Representation of LTI Systems(1) Unit Impulse(Sample) Response LTIxn=nyn=hn Unit Impulse Response: hn 3- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems(2) Convolution Sum of LTI System LTIx
3、nyn=?Solution:Question: n hnn-k hn-kxkn-k xk hn-k4- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems5- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems6- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems( Convolution Sum )Soor yn = xn * hn(3) Calculation of Conv
4、olution SumTime Inversal: hk h-kTime Shift: h-k hn-kMultiplication: xkhn-kSumming: Example 2.1 2.2 2.3 2.4 2.57- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.2 Continuous-time LTI system: The convolution integral2.2.1 The Representation of Continuous-time Signals in Terms of Impuls
5、esDefine We have the expression: Therefore: 8- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems9- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systemsor 10- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.2.2 The Continuous-time Unit impulse Response and the conv
6、olution Integral Representation of LTI Systems(1) Unit Impulse Response LTIx(t)=(t)y(t)=h(t)(2) The Convolution of LTI System LTIx(t)y(t)=?11- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant SystemsA. LTI(t)h(t)x(t)y(t)=?Because of So,we can get ( Convolution Integral ) or y(t) = x(t) * h(t) 1
7、2- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant SystemsB. or y(t) = x(t) * h(t) LTI(t)h(t)(t) h(t)( Convolution Integral ) 13- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems14- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems(3) Computation of Convolution Integra
8、l Time Inversal: h() h(- )Time Shift: h(-) h(t- )Multiplication: x()h(t- )Integrating: Example 2.6 2.815- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3 Properties of Linear Time Invariant SystemConvolution formula:h(t)x(t)y(t)=x(t)*h(t)hnxnyn=xn*hn16- 2 Linear Time-Invariant Syste
9、 2 Linear Time-Invariant Systems2.3.1 The Commutative PropertyDiscrete time: xn*hn=hn*xnContinuous time: x(t)*h(t)=h(t)*x(t)h(t)x(t)y(t)=x(t)*h(t)x(t)h(t)y(t)=h(t)*x(t)17- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.2 The Distributive PropertyDiscrete time: xn*h1n+h2n=xn*h1n+xn*
10、h2nContinuous time: x(t)*h1(t)+h2(t)=x(t)*h1(t)+x(t)*h2(t)h1(t)+h2(t)x(t)y(t)=x(t)*h1(t)+h2(t)h1(t)x(t)y(t)=x(t)*h1(t)+x(t)*h2(t)h2(t)Example 2.1018- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.3 The Associative PropertyDiscrete time: xn*h1n*h2n=xn*h1n*h2nContinuous time: x(t)*h
11、1(t)*h2(t)=x(t)*h1(t)*h2(t)h1(t)*h2(t)x(t)y(t)=x(t)*h1(t)*h2(t)h1(t)x(t)y(t)=x(t)*h1(t)*h2(t)h2(t)19- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.4 LTI system with and without MemoryMemoryless system: Discrete time: yn=kxn, hn=kn Continuous time: y(t)=kx(t), h(t)=k (t)k (t) x(t)
12、y(t)=kx(t)=x(t)*k(t)k n xnyn=kxn=xn*knImply that: x(t)* (t)=x(t) and xn* n=xn20- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.5 Invertibility of LTI systemOriginal system: h(t)Reverse system: h1(t)(t) x(t)x(t)*(t)=x(t)So, for the invertible system: h(t)*h1(t)=(t) or hn*h1n=nh(t)
13、x(t)x(t)h1(t) Example 2.11 2.1221- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.6 Causality for LTI systemDiscrete time system satisfy the condition: hn=0 for n0Continuous time system satisfy the condition: h(t)=0 for t022- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Sy
14、stems2.3.7 Stability for LTI system Definition of stability: Every bounded input produces a bounded output. Discrete time system:If |xn|B, the condition for |yn|A is23- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant SystemsContinuous time system:If |x(t)|B, the condition for |y(t)|A isExample
15、 2.1324- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.3.8 The Unit Step Response of LTI systemDiscrete time system:hn nhnunsn=un*hnContinuous time system:h(t) (t)h(t)u(t)s(t)=u(t)*h(t)25- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.4 Causal LTI Systems Described
16、by Differential and Difference EquationDiscrete time system: Differential EquationContinuous time system: Difference Equation26- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.4.1 Linear Constant-Coefficient Differential EquationA general Nth-order linear constant-coefficient differe
17、ntial equation:orand initial condition: y(t0), y(t0), , y(N-1)(t0) ( N values )27- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.4.2 Linear Constant-Coefficient Difference EquationA general Nth-order linear constant-coefficient difference equation:orand initial condition: y0, y-1, ,
18、 y-(N-1) ( N values )Example 2.1528- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems2.4.3 Block Diagram Representations of First-order Systems Described by Differential and Difference Equation(1) Dicrete time system Basic elements: A. An adder B. Multiplication by a coefficient C. An unit delay29- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant SystemsBasic elements: 30- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant SystemsExample: yn+ayn-1=bxn 31- 2 Linear Time-Invariant Syste 2 Linear Time-Invariant Systems(2) Contin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘇州工藝美術職業(yè)技術學院《幼兒園課程與教學》2023-2024學年第二學期期末試卷
- 四川省自貢市普高2025年招生全國統一考試仿真卷(七)-高考物理試題仿真試題含解析
- 南京財經大學紅山學院《傳播中的法與理》2023-2024學年第二學期期末試卷
- 新疆藝術學院《環(huán)境分析與監(jiān)測》2023-2024學年第二學期期末試卷
- 江蘇省南通市安海中學2024-2025學年高三第一次質量調研普查考試化學試題含解析
- 天府新區(qū)信息職業(yè)學院《災害風險評估》2023-2024學年第二學期期末試卷
- 商丘學院《兒童戲劇創(chuàng)編與表演》2023-2024學年第二學期期末試卷
- 平涼職業(yè)技術學院《小學寫作指導》2023-2024學年第二學期期末試卷
- 山西財貿職業(yè)技術學院《數字媒體圖像處理》2023-2024學年第二學期期末試卷
- 江蘇省常州市戚墅堰高級中學2025屆高三一診練習三數學試題含解析
- 走進物理-走向統一的自然力(上)智慧樹知到答案2024年廣西師范大學
- 2024年全國一級注冊建筑師之建筑設計考試重點試題附答案
- 小學三年級數學兩位數乘兩位數筆算能力測驗練習題
- 打掃衛(wèi)生勞動合同范本
- 新疆伊犁哈薩克自治州2023-2024學年下學期七年級期中英語試卷
- 人教PEP六年級英語下冊Unit1Howtallareyou大單元整體教學設計
- 個體工商戶公司章程模板
- 心理發(fā)展與教育智慧樹知到期末考試答案章節(jié)答案2024年浙江師范大學
- 工作計劃進度表(自動甘特圖)電子表格模板
- 網絡營銷:推廣與策劃 第3版 課件 項目4 搜索引擎營銷(知識基石)
- 期中試卷(試題)-2023-2024學年六年級下冊數學人教版
評論
0/150
提交評論