(新高考)高考數(shù)學一輪復習講練測專題3.1《函數(shù)的概念及其表示》(解析版)_第1頁
(新高考)高考數(shù)學一輪復習講練測專題3.1《函數(shù)的概念及其表示》(解析版)_第2頁
(新高考)高考數(shù)學一輪復習講練測專題3.1《函數(shù)的概念及其表示》(解析版)_第3頁
(新高考)高考數(shù)學一輪復習講練測專題3.1《函數(shù)的概念及其表示》(解析版)_第4頁
(新高考)高考數(shù)學一輪復習講練測專題3.1《函數(shù)的概念及其表示》(解析版)_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

專題3.1函數(shù)的概念及其表示新課程考試要求1.了解函數(shù)的概念,會求簡單的函數(shù)的定義域和值域.2.理解函數(shù)的三種表示法:解析法、圖象法和列表法.3.了解簡單的分段函數(shù),會用分段函數(shù)解決簡單的問題.核心素養(yǎng)培養(yǎng)學生數(shù)學抽象(例1.3)、數(shù)學運算(例2--12)、數(shù)學建模(例9)、直觀想象(例5.10)等核心數(shù)學素養(yǎng).考向預測1.分段函數(shù)的應(yīng)用,要求不但要理解分段函數(shù)的概念,更要掌握基本初等函數(shù)的圖象和性質(zhì).2.函數(shù)的概念,經(jīng)常與函數(shù)的圖象和性質(zhì)結(jié)合考查.【知識清單】1.函數(shù)的概念函數(shù)兩個集合A,B設(shè)A,B是兩個非空數(shù)集對應(yīng)關(guān)系f:A→B如果按照某種確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng)2.函數(shù)的定義域、值域(1)在函數(shù)y=f(x),x∈A中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.(2)如果兩個函數(shù)的定義域相同,并且對應(yīng)關(guān)系完全一致,則這兩個函數(shù)為相等函數(shù).3.分段函數(shù)(1)若函數(shù)在其定義域的不同子集上,因?qū)?yīng)關(guān)系不同而分別用幾個不同的式子來表示,這種函數(shù)稱為分段函數(shù).(2)分段函數(shù)的定義域等于各段函數(shù)的定義域的并集,其值域等于各段函數(shù)的值域的并集,分段函數(shù)雖由幾個部分組成,但它表示的是一個函數(shù).【考點分類剖析】考點一函數(shù)的概念【典例1】【多選題】(2021·浙江高一期末)在下列四組函數(shù)中,SKIPIF1<0與SKIPIF1<0不表示同一函數(shù)的是()A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】ACD【解析】根據(jù)同一函數(shù)的要求,兩個函數(shù)的定義域和對應(yīng)法則應(yīng)相同,對四個選項中的兩個函數(shù)分別進行判斷,得到答案.【詳解】A選項,SKIPIF1<0定義域為SKIPIF1<0,SKIPIF1<0的定義域為SKIPIF1<0,所以二者不是同一函數(shù),故A符合題意;B選項,SKIPIF1<0,與SKIPIF1<0定義域相同,對應(yīng)法則也相同,所以二者是同一函數(shù),故B不符合題意;C選項,SKIPIF1<0定義域為SKIPIF1<0,SKIPIF1<0的定義域為SKIPIF1<0,所以二者不是同一函數(shù),故C符合題意;D選項,SKIPIF1<0定義域為SKIPIF1<0,SKIPIF1<0的定義域為SKIPIF1<0,所以二者不是同一函數(shù),故D符合題意;故選:ACD.【規(guī)律方法】函數(shù)的三要素中,若定義域和對應(yīng)關(guān)系相同,則值域一定相同.因此判斷兩個函數(shù)是否相同,只需判斷定義域、對應(yīng)關(guān)系是否分別相同.【變式探究】(2021·浙江高一期末)下列函數(shù)中,與函數(shù)SKIPIF1<0是相等函數(shù)的是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】依次判斷各個選項的解析式和定義域是否和SKIPIF1<0相同,二者皆相同即為同一函數(shù),由此得到結(jié)果.【詳解】SKIPIF1<0的定義域為SKIPIF1<0;對于A,SKIPIF1<0定義域為SKIPIF1<0,與SKIPIF1<0定義域不同,不是同一函數(shù),A錯誤;對于B,SKIPIF1<0,與SKIPIF1<0定義域相同,解析式相同,是同一函數(shù),B正確;對于C,SKIPIF1<0定義域為SKIPIF1<0,與SKIPIF1<0定義域不同,不是同一函數(shù),C錯誤;對于D,SKIPIF1<0,與SKIPIF1<0解析式不同,不是同一函數(shù),D錯誤.故選:B.【易混辨析】1.判斷兩個函數(shù)是否為相同函數(shù),注意把握兩點,一看定義域是否相等,二看對應(yīng)法則是否相同.2.從圖象看,直線x=a與圖象最多有一個交點.考點二:求函數(shù)的定義域【典例2】(2019·江蘇高考真題)函數(shù)的定義域是_____.【答案】.【解析】由已知得,即解得,故函數(shù)的定義域為.【典例3】(2021·全國高一課時練習)(1)已知SKIPIF1<0的定義域為SKIPIF1<0,求函數(shù)SKIPIF1<0的定義域;(2)已知SKIPIF1<0的定義域為SKIPIF1<0,求SKIPIF1<0的定義域;(3)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,求函數(shù)SKIPIF1<0的定義域.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.【解析】利用抽象函數(shù)的定義域求解.【詳解】(1)∵SKIPIF1<0中的SKIPIF1<0的范圍與SKIPIF1<0中的x的取值范圍相同.∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0的定義域為SKIPIF1<0.(2)由題意知SKIPIF1<0中的SKIPIF1<0,∴SKIPIF1<0.又SKIPIF1<0中SKIPIF1<0的取值范圍與SKIPIF1<0中的x的取值范圍相同,∴SKIPIF1<0的定義域為SKIPIF1<0.(3)∵函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,∴SKIPIF1<0的定義域為SKIPIF1<0.又SKIPIF1<0,即SKIPIF1<0,∴函數(shù)SKIPIF1<0的定義域為SKIPIF1<0.【規(guī)律方法】1.已知函數(shù)的具體解析式求定義域的方法(1)若f(x)是由一些基本初等函數(shù)通過四則運算構(gòu)成的,則它的定義域為各基本初等函數(shù)的定義域的交集.(2)復合函數(shù)的定義域:先由外層函數(shù)的定義域確定內(nèi)層函數(shù)的值域,從而確定對應(yīng)的內(nèi)層函數(shù)自變量的取值范圍,還需要確定內(nèi)層函數(shù)的定義域,兩者取交集即可.2.抽象函數(shù)的定義域的求法(1)若已知函數(shù)f(x)的定義域為[a,b],則復合函數(shù)f(g(x))的定義域由a≤g(x)≤b求出.(2)若已知函數(shù)f(g(x))的定義域為[a,b],則f(x)的定義域為g(x)在x∈[a,b]時的值域.【變式探究】1.函數(shù)的定義域為()A. B.C. D.【答案】C【解析】故答案選C2.(2020·河南省鄭州一中高二期中(文))已知函數(shù)定義域是,則的定義域是()A.[0,] B. C. D.【答案】A【解析】因為函數(shù)定義域是所以所以,解得:故函數(shù)的定義域是[0,]故選:A【特別提醒】求函數(shù)的定義域,往往要解不等式或不等式組,因此,要熟練掌握一元一次不等式、一元二次不等式的解法、牢記不等式的性質(zhì),學會利用數(shù)形結(jié)合思想,借助數(shù)軸解題.另外,函數(shù)的定義域、值域都是集合,要用適當?shù)谋硎痉椒右员磉_或依據(jù)題目的要求予以表達.高頻考點三:求函數(shù)的解析式【典例4】(2021·全國高一課時練習)已知fSKIPIF1<0=x2+SKIPIF1<0,則函數(shù)f(x)=_______,f(3)=_______.【答案】SKIPIF1<011【解析】利用換元法可求出SKIPIF1<0,進一步可得SKIPIF1<0.【詳解】令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.【典例5】(2021·全國高三專題練習)如圖所示,函數(shù)SKIPIF1<0的圖象是折線段ABC,其中A、B、C的坐標分別為(0,4)、(2,0)、(6,4),求函數(shù)SKIPIF1<0的解析式.【答案】SKIPIF1<0【解析】根據(jù)圖象分段求出解析式,再寫成分段的形式即可得解.【詳解】設(shè)線段SKIPIF1<0所對應(yīng)的函數(shù)解析式為SKIPIF1<0,將SKIPIF1<0與SKIPIF1<0代入SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,同理,線段SKIPIF1<0所對應(yīng)的函數(shù)解析式為SKIPIF1<0,所以SKIPIF1<0.【規(guī)律方法】1.已知函數(shù)類型,用待定系數(shù)法求解析式.2.已知函數(shù)圖象,用待定系數(shù)法求解析式,如果圖象是分段的,要用分段函數(shù)表示.3.已知求,或已知求,用代入法、換元法或配湊法.4.若與或滿足某個等式,可構(gòu)造另一個等式,通過解方程組求解.5.應(yīng)用題求解析式可用待定系數(shù)法求解.【變式探究】1.已知單調(diào)函數(shù)f(x),對任意的x∈R都有f[f(x)?2x]=6,則f(2)=()A.2B.4C.6D.8【答案】C【解析】設(shè)t=f(x)?2x,則ft=6令x=t,則f解得t=2,∴fx∴f2故選C.2.(2021·全國高一課時練習)已知二次函數(shù)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的解析式.(2)求SKIPIF1<0在SKIPIF1<0上的最大值.【答案】(1)SKIPIF1<0;(2)3.【解析】(1)設(shè)SKIPIF1<0,SKIPIF1<0,代入求解SKIPIF1<0,化簡求解系數(shù).(2)將二次函數(shù)配成頂點式,分析其單調(diào)性,即可求出其最值.【詳解】(1)設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,∴由題SKIPIF1<0,SKIPIF1<0恒成立∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.(2)由(1)可得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,且SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0.考點四:求函數(shù)的值域

【典例6】函數(shù)的值域為()A. B. C. D.【答案】C【解析】當時,,(當且僅當,即時取等號),的值域為.故選:.【典例7】【多選題】(2021·全國高三專題練習)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,值域為SKIPIF1<0,則()A.函數(shù)SKIPIF1<0的定義域為SKIPIF1<0 B.函數(shù)SKIPIF1<0的值域為SKIPIF1<0C.函數(shù)SKIPIF1<0的定義域和值域都是SKIPIF1<0 D.函數(shù)SKIPIF1<0的定義域和值域都是SKIPIF1<0【答案】BC【解析】根據(jù)抽象函數(shù)的定義域即可判斷選項A,根據(jù)SKIPIF1<0值域為SKIPIF1<0,即可判斷選項B,令SKIPIF1<0,求SKIPIF1<0得范圍即為定義域,由SKIPIF1<0可得值域,即可判斷選項C,由SKIPIF1<0的值域為SKIPIF1<0可得SKIPIF1<0,但無法判斷定義域,可判斷選項D,進而可得正確選項.【詳解】對于選項A:令SKIPIF1<0可得SKIPIF1<0,所以函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,故選項A不正確;對于選項B:因為SKIPIF1<0值域為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的值域為SKIPIF1<0,可得函數(shù)SKIPIF1<0的值域為SKIPIF1<0,故選項B正確;對于選項C:令SKIPIF1<0,因為SKIPIF1<0可得SKIPIF1<0恒成立,所以函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,因為SKIPIF1<0,所以函數(shù)SKIPIF1<0的值域為SKIPIF1<0,故選項C正確;對于選項D:若函數(shù)SKIPIF1<0的值域是SKIPIF1<0,則SKIPIF1<0,此時無法判斷其定義域是否為SKIPIF1<0,故選項D不正確,故選:BC【典例8】(2021·浙江高一期末)函數(shù)SKIPIF1<0的定義域是_________,函數(shù)SKIPIF1<0的值域為__________.【答案】SKIPIF1<0SKIPIF1<0【解析】①由SKIPIF1<0解不等式,即可求出定義域;②利用換元法,令SKIPIF1<0,SKIPIF1<0,將原函數(shù)轉(zhuǎn)化為關(guān)于SKIPIF1<0的二次函數(shù),求值域即可.【詳解】①由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,故函數(shù)SKIPIF1<0的定義域是SKIPIF1<0.②令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以原函數(shù)可化為SKIPIF1<0,其對稱軸為SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0的值域為SKIPIF1<0.故答案為:①SKIPIF1<0;②SKIPIF1<0【規(guī)律方法】函數(shù)值域的常見求法:(1)配方法配方法是求“二次函數(shù)型函數(shù)”值域的基本方法,形如F(x)=a[f(x)]2+bf(x)+c(a≠0)的函數(shù)的值域問題,均可使用配方法.(2)數(shù)形結(jié)合法若函數(shù)的解析式的幾何意義較明顯,如距離、斜率等,可用數(shù)與形結(jié)合的方法.(3)基本不等式法:要注意條件“一正,二定,三相等”.(可見上一專題)(4)利用函數(shù)的單調(diào)性①單調(diào)函數(shù)的圖象是一直上升或一直下降的,因此若單調(diào)函數(shù)在端點處有定義,則該函數(shù)在端點處取最值,即若y=f(x)在[a,b]上單調(diào)遞增,則y最?。絝(a),y最大=f(b);若y=f(x)在[a,b]上單調(diào)遞減,則y最?。絝(b),y最大=f(a).②形如y=ax+b+eq\r(dx+c)的函數(shù),若ad>0,則用單調(diào)性求值域;若ad<0,則用換元法.③形如y=x+eq\f(k,x)(k>0)的函數(shù),若不能用基本不等式,則可考慮用函數(shù)的單調(diào)性,當x>0時,函數(shù)y=x+eq\f(k,x)(k>0)的單調(diào)減區(qū)間為(0,eq\r(k)],單調(diào)增區(qū)間為[eq\r(k),+∞).一般地,把函數(shù)y=x+eq\f(k,x)(k>0,x>0)叫做對勾函數(shù),其圖象的轉(zhuǎn)折點為(eq\r(k),2eq\r(k)),至于x<0的情況,可根據(jù)函數(shù)的奇偶性解決.*(5)導數(shù)法利用導函數(shù)求出最值,從而確定值域.高頻考點五:分段函數(shù)及其應(yīng)用【典例9】(2021·河南新鄉(xiāng)市·高三月考(理))如圖,在正方形SKIPIF1<0中,SKIPIF1<0點SKIPIF1<0從點SKIPIF1<0出發(fā),沿SKIPIF1<0向,以每SKIPIF1<0個單位的速度在正方形SKIPIF1<0的邊上運動;點SKIPIF1<0從點SKIPIF1<0出發(fā),沿SKIPIF1<0方向,以每秒SKIPIF1<0個單位的速度在正方形SKIPIF1<0的邊上運動.點SKIPIF1<0與點SKIPIF1<0同時出發(fā),運動時間為SKIPIF1<0(單位:秒),SKIPIF1<0的面積為SKIPIF1<0(規(guī)定SKIPIF1<0共線時其面積為零,則點SKIPIF1<0第一次到達點SKIPIF1<0時,SKIPIF1<0的圖象為()A. B.C. D.【答案】A【解析】根據(jù)題意,分別求出當SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0對應(yīng)的函數(shù)解析式,進而得答案.【詳解】根據(jù)題意,當SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0;當SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0;當SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0;當SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0;所以SKIPIF1<0所以根據(jù)分段函數(shù)的解析式即可得在區(qū)間上的函數(shù)圖像為選項A.故選:A.【典例10】(2021·四川達州市·高三二模(理))已知函數(shù)SKIPIF1<0若SKIPIF1<0,則SKIPIF1<0的取值范圍是__________.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0,且SKIPIF1<0,結(jié)合圖象有SKIPIF1<0,從而得到SKIPIF1<0SKIPIF1<0求解.【詳解】函數(shù)SKIPIF1<0的圖象如圖所示:設(shè)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,其對稱軸為SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增,在SKIPIF1<0上遞增,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0,故答案為:SKIPIF1<0【典例11】(2021·全國高一課時練習)對于任意的實數(shù)SKIPIF1<0,SKIPIF1<0表示SKIPIF1<0中較小的那個數(shù),若SKIPIF1<0,SKIPIF1<0,則集合SKIPIF1<0_______;SKIPIF1<0的最大值是_______.【答案】SKIPIF1<01【解析】作出函數(shù)SKIPIF1<0的圖象,解出方程SKIPIF1<0可得SKIPIF1<0,由圖可得SKIPIF1<0,然后可得其最大值.【詳解】函數(shù)SKIPIF1<0的圖象如下,令SKIPIF1<0,即SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0則集合SKIPIF1<0由題意及圖象得SKIPIF1<0由圖象知,當SKIPIF1<0時,SKIPIF1<0最大,最大值是1.故答案為:SKIPIF1<0,1【典例12】(江蘇高考真題)已知實數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0,若SKIPIF1<0,則a的值為________【答案】SKIPIF1<0【解析】分當SKIPIF1<0時和當SKIPIF1<0時兩種分別討論求解方程,可得答案.【詳解】當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0解得SKIPIF1<0,不滿足,舍去;當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0解得SKIPIF1<0,滿足.故答案為:SKIPIF1<0.【總結(jié)提升】1.“分段求解”是處理分段函數(shù)問題解的基本原則;2.數(shù)形結(jié)合往往是解答選擇、填空題的“捷徑”.【變式探究】1.(2021·全國高一課時練習)已知a>SKIPIF1<0,則函數(shù)f(x)=x2+|x-a|的最小值是()A.a(chǎn)2+1 B.a(chǎn)+SKIPIF1<0C.a(chǎn)-SKIPIF1<0 D.a(chǎn)-SKIPIF1<0【答案】D【解析】先化簡函數(shù)的解析式得SKIPIF1<0再分類討論,求出每一段的最小值,即得函數(shù)的最小值.【詳解】函數(shù)f(x)=x2+|x-a|=SKIPIF1<0當x≥a>SKIPIF1<0時,函數(shù)f(x)=x2+x-a的對稱軸方程為x=-SKIPIF1<0,函數(shù)在[a,+∞)上單調(diào)遞增,其最小值為a2;當x<a時,f(x)=x2-x+a的對稱軸方程為x=SKIPIF1<0,當x=SKIPIF1<0時函數(shù)求得最小值為a-SKIPIF1<0.因為a2-SKIPIF1<0=a2-a+SKIPIF1<0=SKIPIF1<0>0.所以a2>a-SKIPIF1<0.所以函數(shù)f(x)=x2+|x-a|的最小值是a-SKIPIF1<0.故選:D2.(2021·全國高一課時練習)已知函數(shù)f(x)SKIPIF1<0則f(1)=_______,若f(f(0))=a,則實數(shù)a=_______.【答案】5SKIPIF1<0【解析】結(jié)合函數(shù)SKIPIF1<0由內(nèi)到外逐層計算SKIPIF1<0,可得出關(guān)于SKIPIF1<0的等式,進而可解得實數(shù)SKIPIF1<0的值.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,解得SKIPIF1<0故答案為:5,SKIPIF1<0專題3.1函數(shù)的概念及其表示練基礎(chǔ)練基礎(chǔ)1.(2021·四川達州市·高三二模(文))已知定義在R上的函數(shù)SKIPIF1<0滿足,SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】當SKIPIF1<0時,SKIPIF1<0(1)SKIPIF1<0①;當SKIPIF1<0時,SKIPIF1<0(1)SKIPIF1<0②,由此進行計算能求出SKIPIF1<0(1)的值.【詳解】SKIPIF1<0定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足,SKIPIF1<0,SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0(1)SKIPIF1<0,①當SKIPIF1<0時,SKIPIF1<0(1)SKIPIF1<0,②②SKIPIF1<0①,得SKIPIF1<0(1)SKIPIF1<0,解得SKIPIF1<0(1)SKIPIF1<0.故選:B2.(2021·浙江高一期末)已知SKIPIF1<0則SKIPIF1<0()A.7 B.2 C.10 D.12【答案】D【解析】根據(jù)分段函數(shù)的定義計算.【詳解】由題意SKIPIF1<0.故選:D.3.(2021·全國高一課時練習)設(shè)SKIPIF1<0,則SKIPIF1<0的值為()A.16 B.18 C.21 D.24【答案】B【解析】根據(jù)分段函數(shù)解析式直接求解.【詳解】因為SKIPIF1<0,所以SKIPIF1<0.故選:B.4.(2021·浙江湖州市·湖州中學高一開學考試)若函數(shù)SKIPIF1<0的定義域和值域都是SKIPIF1<0,則SKIPIF1<0()A.1 B.3 C.SKIPIF1<0 D.1或3【答案】B【解析】根據(jù)函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),求出其值域,結(jié)合已知值域可求出結(jié)果.【詳解】因為函數(shù)SKIPIF1<0SKIPIF1<0在SKIPIF1<0上為增函數(shù),且定義域和值域都是SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍),故選:B5.(上海高考真題)若是的最小值,則的取值范圍為().A.[-1,2] B.[-1,0] C.[1,2] D.SKIPIF1<0【答案】D【詳解】由于當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0時取得最小值SKIPIF1<0,由題意當SKIPIF1<0時,SKIPIF1<0應(yīng)該是遞減的,則SKIPIF1<0,此時最小值為SKIPIF1<0,因此SKIPIF1<0,解得SKIPIF1<0,選D.6.(廣東高考真題)函數(shù)SKIPIF1<0的定義域是______.【答案】SKIPIF1<0【解析】由根式內(nèi)部的代數(shù)式大于等于0且分式的分母不等于0聯(lián)立不等式組求解x的取值集合得答案.【詳解】由SKIPIF1<0,得SKIPIF1<0且SKIPIF1<0.

SKIPIF1<0函數(shù)SKIPIF1<0的定義域為:SKIPIF1<0;

故答案為SKIPIF1<0.7.(2021·青海西寧市·高三一模(理))函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,圖象如圖1所示,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,圖象如圖2所示.若集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0中有___________個元素.【答案】3【解析】利用數(shù)形結(jié)合分別求出集合SKIPIF1<0與集合SKIPIF1<0,再利用交集運算法則即可求出結(jié)果.【詳解】若SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0或1,∴SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0或2,∴SKIPIF1<0,∴SKIPIF1<0.故答案為:3.8.(2021·湖北襄陽市·襄陽五中高三二模)已知函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域是_______.【答案】SKIPIF1<0【解析】令SKIPIF1<0,根據(jù)函數(shù)值域的求解方法可求得SKIPIF1<0的值域即為所求的SKIPIF1<0的定義域.【詳解】令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的定義域為SKIPIF1<0.故答案為:SKIPIF1<0.9.(2021·黑龍江哈爾濱市第六中學校高三二模(文))已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則實數(shù)SKIPIF1<0___________.【答案】1或SKIPIF1<0【解析】分別令SKIPIF1<0,SKIPIF1<0,解方程,求出方程的根即SKIPIF1<0的值即可.【詳解】當SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0,當SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0,故答案為:1或SKIPIF1<0.10.(2021·云南高三二模(理))已知函數(shù)SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0的取值范圍為________.【答案】SKIPIF1<0【解析】用SKIPIF1<0表示出SKIPIF1<0,結(jié)合二次函數(shù)的性質(zhì)求得SKIPIF1<0的取值范圍.【詳解】畫出SKIPIF1<0圖象如下圖所示,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0所以SKIPIF1<0,結(jié)合二次函數(shù)的性質(zhì)可知,當SKIPIF1<0時,SKIPIF1<0取得最大值為SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0取得最小值為SKIPIF1<0.所以SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0練提升TIDHNEG練提升TIDHNEG1.(2021·云南高三二模(文))已知函數(shù)SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0,設(shè)SKIPIF1<0,則()A.SKIPIF1<0沒有最小值 B.SKIPIF1<0的最小值為SKIPIF1<0C.SKIPIF1<0的最小值為SKIPIF1<0 D.SKIPIF1<0的最小值為SKIPIF1<0【答案】B【解析】先作出分段函數(shù)圖象,再結(jié)合圖象由SKIPIF1<0,得到m與n的關(guān)系,消元得關(guān)于n的函數(shù),最后求最值.【詳解】如圖,作出函數(shù)SKIPIF1<0的圖象,SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.由SKIPIF1<0,解得SKIPIF1<0.SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0.故選:B.2.(2020·全國高一單元測試)已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的取值集合是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】根據(jù)分段函數(shù)值的求解方法,對SKIPIF1<0與SKIPIF1<0兩種情況求解,可得答案.【詳解】若SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,(SKIPIF1<0舍去);若SKIPIF1<0,可得SKIPIF1<0=5,可得SKIPIF1<0,與SKIPIF1<0相矛盾,故舍去,綜上可得:SKIPIF1<0.故選:A.3.【多選題】(2021·全國高一課時練習)(多選題)下列函數(shù)中,定義域是其值域子集的有()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AC【解析】分別求得函數(shù)的定義域和值域,利用子集的定義判斷.【詳解】A函數(shù)的定義域和值域都是R,符合題意;B.定義域為R,因為SKIPIF1<0,所以函數(shù)值域為SKIPIF1<0,值域是定義域的真子集不符合題意;C.易得定義域為SKIPIF1<0,值域為SKIPIF1<0,定義域是值域的真子集;D.定義域為SKIPIF1<0,值域為SKIPIF1<0,兩個集合只有交集;故選:AC4.【多選題】(2021·全國高一課時練習)已知f(x)=SKIPIF1<0,則f(x)滿足的關(guān)系有()A.SKIPIF1<0 B.SKIPIF1<0=SKIPIF1<0C.SKIPIF1<0=f(x) D.SKIPIF1<0【答案】BD【解析】根據(jù)函數(shù)SKIPIF1<0的解析式,對四個選項逐個分析可得答案.【詳解】因為f(x)=SKIPIF1<0,所以SKIPIF1<0=SKIPIF1<0=SKIPIF1<0SKIPIF1<0,即不滿足A選項;SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,SKIPIF1<0=SKIPIF1<0,即滿足B選項,不滿足C選項,SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,SKIPIF1<0,即滿足D選項.故選:BD5.【多選題】(2021·全國高三其他模擬)已知函數(shù)SKIPIF1<0令SKIPIF1<0,則下列說法正確的是()A.SKIPIF1<0 B.方程SKIPIF1<0有3個根C.方程SKIPIF1<0的所有根之和為-1 D.當SKIPIF1<0時,SKIPIF1<0【答案】ACD【解析】由題意知SKIPIF1<0可得SKIPIF1<0;令SKIPIF1<0,因為方程SKIPIF1<0沒有實根,即SKIPIF1<0沒有實根;令SKIPIF1<0,則方程SKIPIF1<0,即SKIPIF1<0,通過化簡與計算即可判斷C;當SKIPIF1<0時,SKIPIF1<0,則將函數(shù)SKIPIF1<0在SKIPIF1<0的圖象向左平移1個單位長度可得函數(shù)SKIPIF1<0的圖象,即可判斷D.【詳解】對于A選項,由題意知SKIPIF1<0,則SKIPIF1<0,所以A選項正確;對于B選項,令SKIPIF1<0,則求SKIPIF1<0的根,即求SKIPIF1<0的根,因為方程SKIPIF1<0沒有實根,所以SKIPIF1<0沒有實根,所以選項B錯誤;對于C選項,令SKIPIF1<0,則方程SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,由方程SKIPIF1<0得SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,易知方程SKIPIF1<0,沒有實數(shù)根,所以方程SKIPIF1<0的所有根之和為-1,選項C正確;對于D選項,當SKIPIF1<0時,SKIPIF1<0,則將函數(shù)SKIPIF1<0在SKIPIF1<0的圖象向左平移1個單位長度可得函數(shù)SKIPIF1<0的圖象,當SKIPIF1<0時,函數(shù)SKIPIF1<0的圖象不在SKIPIF1<0的圖象的下方,所以D選項正確,故選:ACD.6.【多選題】(2021·全國高三專題練習)已知函數(shù)SKIPIF1<0,SKIPIF1<0,對于任意的SKIPIF1<0,SKIPIF1<0,則()A.SKIPIF1<0的圖象過點SKIPIF1<0和SKIPIF1<0B.SKIPIF1<0在定義域上為奇函數(shù)C.若當SKIPIF1<0時,有SKIPIF1<0,則當SKIPIF1<0時,SKIPIF1<0D.若當SKIPIF1<0時,有SKIPIF1<0,則SKIPIF1<0的解集為SKIPIF1<0【答案】AC【解析】根據(jù)抽象函數(shù)的性質(zhì),利用特殊值法一一判斷即可;【詳解】解:因為函數(shù)SKIPIF1<0,SKIPIF1<0,對于任意的SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0過點SKIPIF1<0和SKIPIF1<0,故A正確;令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0為偶函數(shù),故B錯誤;令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0當SKIPIF1<0時,所以SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,即當SKIPIF1<0時,SKIPIF1<0,故C正確;令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,當SKIPIF1<0時,所以SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,即當SKIPIF1<0時,SKIPIF1<0,因為SKIPIF1<0是偶函數(shù),所以SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0的解集為SKIPIF1<0,故D錯誤;故選:AC7.【多選題】(2021·全國高三專題練習)已知函數(shù)SKIPIF1<0,則()A.SKIPIF1<0B.若SKIPIF1<0,則SKIPIF1<0C.SKIPIF1<0在SKIPIF1<0上是減函數(shù)D.若關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩解,則SKIPIF1<0【答案】ABD【解析】根據(jù)函數(shù)解析式,代入數(shù)據(jù)可判斷A、B的正誤,做出SKIPIF1<0的圖象,可判斷C、D的正誤,即可得答案.【詳解】對于A:由題意得:SKIPIF1<0,所以SKIPIF1<0,故A正確;對于B:當SKIPIF1<0時,SKIPIF1<0,解得a=1,不符合題意,舍去當SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0,符合題意,故B正確;對于C:做出SKIPIF1<0的圖象,如下圖所示:所以SKIPIF1<0在SKIPIF1<0上不是減函數(shù),故C錯誤;對于D:方程SKIPIF1<0有兩解,則SKIPIF1<0圖象與SKIPIF1<0圖象有兩個公共點,如下圖所示所以SKIPIF1<0,故D正確.故選:ABD8.(2021·浙江高三月考)已知SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0,存在SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的取值范圍是______.【答案】SKIPIF1<0【解析】求得SKIPIF1<0關(guān)于SKIPIF1<0對稱所得函數(shù)的解析式,通過構(gòu)造函數(shù),結(jié)合零點存在性列不等式,由此求得SKIPIF1<0的取值范圍.【詳解】由于SKIPIF1<0存在SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0圖象上存在關(guān)于SKIPIF1<0對稱的兩個不同的點.對于SKIPIF1<0,交換SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0(SKIPIF1<0),所以SKIPIF1<0的零點SKIPIF1<0滿足SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,由于SKIPIF1<0,所以解得SKIPIF1<0.故答案為:SKIPIF1<09.(2021·浙江高一期末)已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)在圖SKIPIF1<0中畫出函數(shù)SKIPIF1<0,SKIPIF1<0的圖象;(2)定義:SKIPIF1<0,用SKIPIF1<0表示SKIPIF1<0,SKIPIF1<0中的較小者,記為SKIPIF1<0,請分別用圖象法和解析式法表示函數(shù)SKIPIF1<0.(注:圖象法請在圖SKIPIF1<0中表示,本題中的單位長度請自己定義且標明)【答案】(1)圖象見解析;(2)SKIPIF1<0;圖象見解析.【解析】(1)由一次函數(shù)和二次函數(shù)圖象特征可得結(jié)果;(2)根據(jù)SKIPIF1<0定義可分段討論得到解析式;由解析式可得圖象.【詳解】(1)SKIPIF1<0,SKIPIF1<0的圖象如下圖所示:(2)當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0;綜上所述:SKIPIF1<0.SKIPIF1<0圖象如下圖所示:10.(2021·全國高一課時練習)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)在平面直角坐標系里作出SKIPIF1<0、SKIPIF1<0的圖象.(2)SKIPIF1<0,用SKIPIF1<0表示SKIPIF1<0、SKIPIF1<0中的較小者,記作SKIPIF1<0,請用圖象法和解析法表示SKIPIF1<0;(3)求滿足SKIPIF1<0的SKIPIF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論