2022-2023學年廣西欽州市浦北縣數學高三上期末學業(yè)質量監(jiān)測模擬試題含解析_第1頁
2022-2023學年廣西欽州市浦北縣數學高三上期末學業(yè)質量監(jiān)測模擬試題含解析_第2頁
2022-2023學年廣西欽州市浦北縣數學高三上期末學業(yè)質量監(jiān)測模擬試題含解析_第3頁
2022-2023學年廣西欽州市浦北縣數學高三上期末學業(yè)質量監(jiān)測模擬試題含解析_第4頁
2022-2023學年廣西欽州市浦北縣數學高三上期末學業(yè)質量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將函數f(x)=sin3x-cos3x+1的圖象向左平移個單位長度,得到函數g(x)的圖象,給出下列關于g(x)的結論:①它的圖象關于直線x=對稱;②它的最小正周期為;③它的圖象關于點(,1)對稱;④它在[]上單調遞增.其中所有正確結論的編號是()A.①② B.②③ C.①②④ D.②③④2.若復數滿足(是虛數單位),則()A. B. C. D.3.若函數有兩個極值點,則實數的取值范圍是()A. B. C. D.4.如圖是正方體截去一個四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.5.集合的子集的個數是()A.2 B.3 C.4 D.86.給定下列四個命題:①若一個平面內的兩條直線與另一個平面都平行,則這兩個平面相互平行;②若一個平面經過另一個平面的垂線,則這兩個平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個平面垂直,那么一個平面內與它們的交線不垂直的直線與另一個平面也不垂直.其中,為真命題的是()A.①和②B.②和③C.③和④D.②和④7.已知集合,則=()A. B. C. D.8.已知正四面體的棱長為,是該正四面體外接球球心,且,,則()A. B.C. D.9.已知向量,,則與的夾角為()A. B. C. D.10.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術數之源,其中河圖的排列結構是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽數,黑點為陰數.若從這10個數中任取3個數,則這3個數中至少有2個陽數且能構成等差數列的概率為()A. B. C. D.11.如圖,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋中心(球心)與蛋巢底面的距離為()A. B. C. D.12.在中,“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為,其準線與坐標軸交于點,過的直線與拋物線交于兩點,若,則直線的斜率________.14.已知半徑為4的球面上有兩點A,B,AB=42,球心為O,若球面上的動點C滿足二面角C-AB-O的大小為60°15.已知,則_____。16.已知角的終邊過點,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)隨著互聯(lián)網金融的不斷發(fā)展,很多互聯(lián)網公司推出余額增值服務產品和活期資金管理服務產品,如螞蟻金服旗下的“余額寶”,騰訊旗下的“財富通”,京東旗下“京東小金庫”.為了調查廣大市民理財產品的選擇情況,隨機抽取1200名使用理財產品的市民,按照使用理財產品的情況統(tǒng)計得到如下頻數分布表:分組頻數(單位:名)使用“余額寶”使用“財富通”使用“京東小金庫”30使用其他理財產品50合計1200已知這1200名市民中,使用“余額寶”的人比使用“財富通”的人多160名.(1)求頻數分布表中,的值;(2)已知2018年“余額寶”的平均年化收益率為,“財富通”的平均年化收益率為.若在1200名使用理財產品的市民中,從使用“余額寶”和使用“財富通”的市民中按分組用分層抽樣方法共抽取7人,然后從這7人中隨機選取2人,假設這2人中每個人理財的資金有10000元,這2名市民2018年理財的利息總和為,求的分布列及數學期望.注:平均年化收益率,也就是我們所熟知的利息,理財產品“平均年化收益率為”即將100元錢存入某理財產品,一年可以獲得3元利息.18.(12分)已知函數.(1)求的單調區(qū)間;(2)討論零點的個數.19.(12分)已知函數是減函數.(1)試確定a的值;(2)已知數列,求證:.20.(12分)已知函數.(1)若函數在上單調遞增,求實數的值;(2)定義:若直線與曲線都相切,我們稱直線為曲線、的公切線,證明:曲線與總存在公切線.21.(12分)(某工廠生產零件A,工人甲生產一件零件A,是一等品、二等品、三等品的概率分別為,工人乙生產一件零件A,是一等品、二等品、三等品的概率分別為.己知生產一件一等品、二等品、三等品零件A給工廠帶來的效益分別為10元、5元、2元.(1)試根據生產一件零件A給工廠帶來的效益的期望值判斷甲乙技術的好壞;(2)為鼓勵工人提高技術,工廠進行技術大賽,最后甲乙兩人進入了決賽.決賽規(guī)則是:每一輪比賽,甲乙各生產一件零件A,如果一方生產的零件A品級優(yōu)干另一方生產的零件,則該方得分1分,另一方得分-1分,如果兩人生產的零件A品級一樣,則兩方都不得分,當一方總分為4分時,比賽結束,該方獲勝.Pi+4(i=4,3,2,…,4)表示甲總分為i時,最終甲獲勝的概率.①寫出P0,P8的值;②求決賽甲獲勝的概率.22.(10分)設函數.(1)當時,求不等式的解集;(2)若對恒成立,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據函數圖象的平移變換公式求出函數的解析式,再利用正弦函數的對稱性、單調區(qū)間等相關性質求解即可.【詳解】因為f(x)=sin3x-cos3x+1=2sin(3x-)+1,由圖象的平移變換公式知,函數g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期為,故②正確;令3x+=kπ+,得x=+(k∈Z),所以x=不是對稱軸,故①錯誤;令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函數g(x)的圖象關于點(,1)對稱,故③正確;令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④錯誤;故選:B【點睛】本題考查圖象的平移變換和正弦函數的對稱性、單調性和最小正周期等性質;考查運算求解能力和整體代換思想;熟練掌握正弦函數的對稱性、單調性和最小正周期等相關性質是求解本題的關鍵;屬于中檔題、常考題型2、B【解析】

利用復數乘法運算化簡,由此求得.【詳解】依題意,所以.故選:B【點睛】本小題主要考查復數的乘法運算,考查復數模的計算,屬于基礎題.3、A【解析】試題分析:由題意得有兩個不相等的實數根,所以必有解,則,且,∴.考點:利用導數研究函數極值點【方法點睛】函數極值問題的常見類型及解題策略(1)知圖判斷函數極值的情況.先找導數為0的點,再判斷導數為0的點的左、右兩側的導數符號.(2)已知函數求極值.求f′(x)―→求方程f′(x)=0的根―→列表檢驗f′(x)在f′(x)=0的根的附近兩側的符號―→下結論.(3)已知極值求參數.若函數f(x)在點(x0,y0)處取得極值,則f′(x0)=0,且在該點左、右兩側的導數值符號相反.4、C【解析】

根據三視圖作出幾何體的直觀圖,結合三視圖的數據可求得幾何體的體積.【詳解】根據三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點睛】本題考查利用三視圖計算幾何體的體積,考查空間想象能力與計算能力,屬于基礎題.5、D【解析】

先確定集合中元素的個數,再得子集個數.【詳解】由題意,有三個元素,其子集有8個.故選:D.【點睛】本題考查子集的個數問題,含有個元素的集合其子集有個,其中真子集有個.6、D【解析】

利用線面平行和垂直,面面平行和垂直的性質和判定定理對四個命題分別分析進行選擇.【詳解】當兩個平面相交時,一個平面內的兩條直線也可以平行于另一個平面,故①錯誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯誤;若兩個平面垂直,只有在一個平面內與它們的交線垂直的直線才與另一個平面垂直,故④正確.綜上,真命題是②④.故選:D【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,考查空間想象能力,是中檔題.7、D【解析】

先求出集合A,B,再求集合B的補集,然后求【詳解】,所以.故選:D【點睛】此題考查的是集合的并集、補集運算,屬于基礎題.8、A【解析】

如圖設平面,球心在上,根據正四面體的性質可得,根據平面向量的加法的幾何意義,重心的性質,結合已知求出的值.【詳解】如圖設平面,球心在上,由正四面體的性質可得:三角形是正三角形,,,在直角三角形中,,,,,,因為為重心,因此,則,因此,因此,則,故選A.【點睛】本題考查了正四面體的性質,考查了平面向量加法的幾何意義,考查了重心的性質,屬于中檔題.9、B【解析】

由已知向量的坐標,利用平面向量的夾角公式,直接可求出結果.【詳解】解:由題意得,設與的夾角為,,由于向量夾角范圍為:,∴.故選:B.【點睛】本題考查利用平面向量的數量積求兩向量的夾角,注意向量夾角的范圍.10、C【解析】

先根據組合數計算出所有的情況數,再根據“3個數中至少有2個陽數且能構成等差數列”列舉得到滿足條件的情況,由此可求解出對應的概率.【詳解】所有的情況數有:種,3個數中至少有2個陽數且能構成等差數列的情況有:,共種,所以目標事件的概率.故選:C.【點睛】本題考查概率與等差數列的綜合,涉及到背景文化知識,難度一般.求解該類問題可通過古典概型的概率求解方法進行分析;當情況數較多時,可考慮用排列數、組合數去計算.11、D【解析】

先求出球心到四個支點所在球的小圓的距離,再加上側面三角形的高,即可求解.【詳解】設四個支點所在球的小圓的圓心為,球心為,由題意,球的體積為,即可得球的半徑為1,又由邊長為的正方形硬紙,可得圓的半徑為,利用球的性質可得,又由到底面的距離即為側面三角形的高,其中高為,所以球心到底面的距離為.故選:D.【點睛】本題主要考查了空間幾何體的結構特征,以及球的性質的綜合應用,著重考查了數形結合思想,以及推理與計算能力,屬于基礎題.12、C【解析】

由余弦函數的單調性找出的等價條件為,再利用大角對大邊,結合正弦定理可判斷出“”是“”的充分必要條件.【詳解】余弦函數在區(qū)間上單調遞減,且,,由,可得,,由正弦定理可得.因此,“”是“”的充分必要條件.故選:C.【點睛】本題考查充分必要條件的判定,同時也考查了余弦函數的單調性、大角對大邊以及正弦定理的應用,考查推理能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求出拋物線焦點坐標,由,結合向量的坐標運算得,直線方程為,代入拋物線方程后應用韋達定理得,,從而可求得,得斜率.【詳解】由得,即聯(lián)立得解得或,∴.故答案為:.【點睛】本題考查直線與拋物線相交,考查向量的線性運算的坐標表示.直線方程與拋物線方程聯(lián)立后消元,應用韋達定理是解決直線與拋物線相交問題的常用方法.14、4【解析】

設△ABC所在截面圓的圓心為O1,AB中點為D,連接OD,易知∠ODO1即為二面角C-AB-O的平面角,可求出OD,?O1D及OO1,然后可判斷出四面體OABC外接球的球心E在直線OO1上,在【詳解】設△ABC所在截面圓的圓心為O1,AB中點為D,連接OD,OA=OB,所以,OD⊥AB,同理O1D⊥AB,所以,∠ODO1即為二面角∠ODO因為OA=OB=4,?AB=42,所以△OAB在Rt△ODO1中,由cos60o=O1D因為O1到A、B、C三的距離相等,所以,四面體OABC外接球的球心E在直線OO設四面體OABC外接球半徑為R,在Rt△O1由勾股定理可得:O1B2+O【點睛】本題考查了三棱錐的外接球問題,考查了學生的空間想象能力、邏輯推理能力及計算求解能力,屬于中檔題.15、【解析】

由已知求,再利用和角正切公式,求得,【詳解】因為所以cos因此.【點睛】本題考查了同角三角函數基本關系式與和角的正切公式。16、【解析】

由題意利用任意角的三角函數的定義,兩角和差正弦公式,求得的值.【詳解】解:∵角的終邊過點,∴,,∴,故答案為:.【點睛】本題主要考查任意角的三角函數的定義,兩角和差正弦公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)680元.【解析】

(1)根據題意,列方程,然后求解即可(2)根據題意,計算出10000元使用“余額寶”的利息為(元)和10000元使用“財富通”的利息為(元),得到所有可能的取值為560(元),700(元),840(元),然后根據所有可能的取值,計算出相應的概率,并列出的分布列表,然后求解數學期望即可【詳解】(1)據題意,得,所以.(2)據,得這被抽取的7人中使用“余額寶”的有4人,使用“財富通”的有3人.10000元使用“余額寶”的利息為(元).10000元使用“財富通”的利息為(元).所有可能的取值為560(元),700(元),840(元).,,.的分布列為560700840所以(元).【點睛】本題考查頻數分布表以及分布列和數學期望問題,屬于基礎題18、(1)見解析(2)見解析【解析】

(1)求導后分析導函數的正負再判斷單調性即可.(2),有零點等價于方程實數根,再換元將原方程轉化為,再求導分析的圖像數形結合求解即可.【詳解】(1)的定義域為,,當時,,所以在單調遞減;當時,,所以在單調遞增,所以的減區(qū)間為,增區(qū)間為.(2),有零點等價于方程實數根,令則原方程轉化為,令,.令,,∴,,,,,當時,,當時,.如圖可知①當時,有唯一零點,即有唯一零點;②當時,有兩個零點,即有兩個零點;③當時,有唯一零點,即有唯一零點;④時,此時無零點,即此時無零點.【點睛】本題主要考查了利用導數分析函數的單調性的方法,同時也考查了利用導數分析函數零點的問題,屬于中檔題.19、(Ⅰ)(Ⅱ)見證明【解析】

(Ⅰ)求導得,由是減函數得,對任意的,都有恒成立,構造函數,通過求導判斷它的單調性,令其最大值小于等于0,即可求出;(Ⅱ)由是減函數,且可得,當時,,則,即,兩邊同除以得,,即,從而,兩邊取對數,然后再證明恒成立即可,構造函數,,通過求導證明即可.【詳解】解:(Ⅰ)的定義域為,.由是減函數得,對任意的,都有恒成立.設.∵,由知,∴當時,;當時,,∴在上單調遞增,在上單調遞減,∴在時取得最大值.又∵,∴對任意的,恒成立,即的最大值為.∴,解得.(Ⅱ)由是減函數,且可得,當時,,∴,即.兩邊同除以得,,即.從而,所以①.下面證;記,.∴,∵在上單調遞增,∴在上單調遞減,而,∴當時,恒成立,∴在上單調遞減,即時,,∴當時,.∵,∴當時,,即②.綜上①②可得,.【點睛】本題考查了導數與函數的單調性的關系,考查了函數的最值,考查了構造函數的能力,考查了邏輯推理能力與計算求解能力,屬于難題.,20、(1);(2)見解析.【解析】

(1)求出導數,問題轉化為在上恒成立,利用導數求出的最小值即可求解;(2)分別設切點橫坐標為,利用導數的幾何意義寫出切線方程,問題轉化為證明兩直線重合,只需滿足有解即可,利用函數的導數及零點存在性定理即可證明存在.【詳解】(1),函數在上單調遞增等價于在上恒成立.令,得,所以在單調遞減,在單調遞增,則.因為,則在上恒成立等價于在上恒成立;又,所以,即.(2)設的切點橫坐標為,則切線方程為……①設的切點橫坐標為,則,切線方程為……②若存在,使①②成為同一條直線,則曲線與存在公切線,由①②得消去得即令,則所以,函數在區(qū)間上單調遞增,,使得時總有又時,在上總有解綜上,函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論