版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,B={y∈N|y=x﹣1,x∈A},則A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}2.已知隨機(jī)變量的分布列是則()A. B. C. D.3.若復(fù)數(shù)z滿足,則()A. B. C. D.4.已知非零向量,滿足,,則與的夾角為()A. B. C. D.5.?dāng)?shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,例如:四葉草曲線就是其中一種,其方程為.給出下列四個(gè)結(jié)論:①曲線有四條對(duì)稱軸;②曲線上的點(diǎn)到原點(diǎn)的最大距離為;③曲線第一象限上任意一點(diǎn)作兩坐標(biāo)軸的垂線與兩坐標(biāo)軸圍成的矩形面積最大值為;④四葉草面積小于.其中,所有正確結(jié)論的序號(hào)是()A.①② B.①③ C.①③④ D.①②④6.在各項(xiàng)均為正數(shù)的等比數(shù)列中,若,則()A. B.6 C.4 D.57.在復(fù)平面內(nèi),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為()A. B. C. D.8.若函數(shù)函數(shù)只有1個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.9.設(shè)數(shù)列的各項(xiàng)均為正數(shù),前項(xiàng)和為,,且,則()A.128 B.65 C.64 D.6310.已知不等式組表示的平面區(qū)域的面積為9,若點(diǎn),則的最大值為()A.3 B.6 C.9 D.1211.已知集合,,則為()A. B. C. D.12.雙曲線的一條漸近線方程為,那么它的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若復(fù)數(shù)z滿足,其中i是虛數(shù)單位,則z的模是______.14.棱長(zhǎng)為的正四面體與正三棱錐的底面重合,若由它們構(gòu)成的多面體的頂點(diǎn)均在一球的球面上,則正三棱錐的內(nèi)切球半徑為______.15.(5分)國(guó)家禁毒辦于2019年11月5日至12月15日在全國(guó)青少年毒品預(yù)防教育數(shù)字化網(wǎng)絡(luò)平臺(tái)上開展2019年全國(guó)青少年禁毒知識(shí)答題活動(dòng),活動(dòng)期間進(jìn)入答題專區(qū),點(diǎn)擊“開始答題”按鈕后,系統(tǒng)自動(dòng)生成20道題.已知某校高二年級(jí)有甲、乙、丙、丁、戊五位同學(xué)在這次活動(dòng)中答對(duì)的題數(shù)分別是,則這五位同學(xué)答對(duì)題數(shù)的方差是____________.16.在數(shù)列中,,,曲線在點(diǎn)處的切線經(jīng)過(guò)點(diǎn),下列四個(gè)結(jié)論:①;②;③;④數(shù)列是等比數(shù)列;其中所有正確結(jié)論的編號(hào)是______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(1)求f(x)的單調(diào)遞增區(qū)間;(2)△ABC內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若且A為銳角,a=3,sinC=2sinB,求△ABC的面積.18.(12分)在平面四邊形中,已知,.(1)若,求的面積;(2)若求的長(zhǎng).19.(12分)已知函數(shù)(I)當(dāng)時(shí),解不等式.(II)若不等式恒成立,求實(shí)數(shù)的取值范圍20.(12分)某大學(xué)開學(xué)期間,該大學(xué)附近一家快餐店招聘外賣騎手,該快餐店提供了兩種日工資結(jié)算方案:方案規(guī)定每日底薪100元,外賣業(yè)務(wù)每完成一單提成2元;方案規(guī)定每日底薪150元,外賣業(yè)務(wù)的前54單沒(méi)有提成,從第55單開始,每完成一單提成5元.該快餐店記錄了每天騎手的人均業(yè)務(wù)量,現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為七組,整理得到如圖所示的頻率分布直方圖.(1)隨機(jī)選取一天,估計(jì)這一天該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單的概率;(2)從以往統(tǒng)計(jì)數(shù)據(jù)看,新聘騎手選擇日工資方案的概率為,選擇方案的概率為.若甲、乙、丙、丁四名騎手分別到該快餐店應(yīng)聘,四人選擇日工資方案相互獨(dú)立,求至少有兩名騎手選擇方案的概率,(3)若僅從人日均收入的角度考慮,請(qǐng)你為新聘騎手做出日工資方案的選擇,并說(shuō)明理由.(同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)21.(12分)如圖,在四棱錐中,平面平面,.(Ⅰ)求證:平面;(Ⅱ)若銳二面角的余弦值為,求直線與平面所成的角.22.(10分)某企業(yè)現(xiàn)有A.B兩套設(shè)備生產(chǎn)某種產(chǎn)品,現(xiàn)從A,B兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測(cè)某一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.圖1是從A設(shè)備抽取的樣本頻率分布直方圖,表1是從B設(shè)備抽取的樣本頻數(shù)分布表.圖1:A設(shè)備生產(chǎn)的樣本頻率分布直方圖表1:B設(shè)備生產(chǎn)的樣本頻數(shù)分布表質(zhì)量指標(biāo)值頻數(shù)2184814162(1)請(qǐng)估計(jì)A.B設(shè)備生產(chǎn)的產(chǎn)品質(zhì)量指標(biāo)的平均值;(2)企業(yè)將不合格品全部銷毀后,并對(duì)合格品進(jìn)行等級(jí)細(xì)分,質(zhì)量指標(biāo)值落在內(nèi)的定為一等品,每件利潤(rùn)240元;質(zhì)量指標(biāo)值落在或內(nèi)的定為二等品,每件利潤(rùn)180元;其它的合格品定為三等品,每件利潤(rùn)120元.根據(jù)圖1、表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級(jí)產(chǎn)品的概率.企業(yè)由于投入資金的限制,需要根據(jù)A,B兩套設(shè)備生產(chǎn)的同一種產(chǎn)品每件獲得利潤(rùn)的期望值調(diào)整生產(chǎn)規(guī)模,請(qǐng)根據(jù)以上數(shù)據(jù),從經(jīng)濟(jì)效益的角度考慮企業(yè)應(yīng)該對(duì)哪一套設(shè)備加大生產(chǎn)規(guī)模?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
解出集合A和B即可求得兩個(gè)集合的并集.【詳解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故選:A.【點(diǎn)睛】此題考查求集合的并集,關(guān)鍵在于準(zhǔn)確求解不等式,根據(jù)描述法表示的集合,準(zhǔn)確寫出集合中的元素.2、C【解析】
利用分布列求出,求出期望,再利用期望的性質(zhì)可求得結(jié)果.【詳解】由分布列的性質(zhì)可得,得,所以,,因此,.故選:C.【點(diǎn)睛】本題考查離散型隨機(jī)變量的分布列以及期望的求法,是基本知識(shí)的考查.3、D【解析】
先化簡(jiǎn)得再求得解.【詳解】所以.故選:D【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算和模的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.4、B【解析】
由平面向量垂直的數(shù)量積關(guān)系化簡(jiǎn),即可由平面向量數(shù)量積定義求得與的夾角.【詳解】根據(jù)平面向量數(shù)量積的垂直關(guān)系可得,,所以,即,由平面向量數(shù)量積定義可得,所以,而,即與的夾角為.故選:B【點(diǎn)睛】本題考查了平面向量數(shù)量積的運(yùn)算,平面向量夾角的求法,屬于基礎(chǔ)題.5、C【解析】
①利用之間的代換判斷出對(duì)稱軸的條數(shù);②利用基本不等式求解出到原點(diǎn)的距離最大值;③將面積轉(zhuǎn)化為的關(guān)系式,然后根據(jù)基本不等式求解出最大值;④根據(jù)滿足的不等式判斷出四葉草與對(duì)應(yīng)圓的關(guān)系,從而判斷出面積是否小于.【詳解】①:當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對(duì)稱;當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對(duì)稱;當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對(duì)稱;當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對(duì)稱;綜上可知:有四條對(duì)稱軸,故正確;②:因?yàn)椋?,所以,所以,取等?hào)時(shí),所以最大距離為,故錯(cuò)誤;③:設(shè)任意一點(diǎn),所以圍成的矩形面積為,因?yàn)?,所以,所以,取等?hào)時(shí),所以圍成矩形面積的最大值為,故正確;④:由②可知,所以四葉草包含在圓的內(nèi)部,因?yàn)閳A的面積為:,所以四葉草的面積小于,故正確.故選:C.【點(diǎn)睛】本題考查曲線與方程的綜合運(yùn)用,其中涉及到曲線的對(duì)稱性分析以及基本不等式的運(yùn)用,難度較難.分析方程所表示曲線的對(duì)稱性,可通過(guò)替換方程中去分析證明.6、D【解析】
由對(duì)數(shù)運(yùn)算法則和等比數(shù)列的性質(zhì)計(jì)算.【詳解】由題意.故選:D.【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì),考查對(duì)數(shù)的運(yùn)算法則.掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.7、C【解析】
利用復(fù)數(shù)的運(yùn)算法則、幾何意義即可得出.【詳解】解:復(fù)數(shù)i(2+i)=2i﹣1對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(﹣1,2),故選:C【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.8、C【解析】
轉(zhuǎn)化有1個(gè)零點(diǎn)為與的圖象有1個(gè)交點(diǎn),求導(dǎo)研究臨界狀態(tài)相切時(shí)的斜率,數(shù)形結(jié)合即得解.【詳解】有1個(gè)零點(diǎn)等價(jià)于與的圖象有1個(gè)交點(diǎn).記,則過(guò)原點(diǎn)作的切線,設(shè)切點(diǎn)為,則切線方程為,又切線過(guò)原點(diǎn),即,將,代入解得.所以切線斜率為,所以或.故選:C【點(diǎn)睛】本題考查了導(dǎo)數(shù)在函數(shù)零點(diǎn)問(wèn)題中的應(yīng)用,考查了學(xué)生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于較難題.9、D【解析】
根據(jù),得到,即,由等比數(shù)列的定義知數(shù)列是等比數(shù)列,然后再利用前n項(xiàng)和公式求.【詳解】因?yàn)椋?,所以,所以?shù)列是等比數(shù)列,又因?yàn)?,所以?故選:D【點(diǎn)睛】本題主要考查等比數(shù)列的定義及等比數(shù)列的前n項(xiàng)和公式,還考查了運(yùn)算求解的能力,屬于中檔題.10、C【解析】
分析:先畫出滿足約束條件對(duì)應(yīng)的平面區(qū)域,利用平面區(qū)域的面積為9求出,然后分析平面區(qū)域多邊形的各個(gè)頂點(diǎn),即求出邊界線的交點(diǎn)坐標(biāo),代入目標(biāo)函數(shù)求得最大值.詳解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖所示:則,所以平面區(qū)域的面積,解得,此時(shí),由圖可得當(dāng)過(guò)點(diǎn)時(shí),取得最大值9,故選C.點(diǎn)睛:該題考查的是有關(guān)線性規(guī)劃的問(wèn)題,在求解的過(guò)程中,首先需要正確畫出約束條件對(duì)應(yīng)的可行域,之后根據(jù)目標(biāo)函數(shù)的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個(gè)點(diǎn)是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標(biāo),代入求值,要明確目標(biāo)函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應(yīng)用相應(yīng)的方法求解.11、C【解析】
分別求解出集合的具體范圍,由集合的交集運(yùn)算即可求得答案.【詳解】因?yàn)榧希?,所以故選:C【點(diǎn)睛】本題考查對(duì)數(shù)函數(shù)的定義域求法、一元二次不等式的解法及集合的交集運(yùn)算,考查基本運(yùn)算能力.12、D【解析】
根據(jù)雙曲線的一條漸近線方程為,列出方程,求出的值即可.【詳解】∵雙曲線的一條漸近線方程為,可得,∴,∴雙曲線的離心率.故選:D.【點(diǎn)睛】本小題主要考查雙曲線離心率的求法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求得復(fù)數(shù),再由復(fù)數(shù)模的計(jì)算公式即得.【詳解】,,則.故答案為:【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算和求復(fù)數(shù)的模,是基礎(chǔ)題.14、【解析】
由棱長(zhǎng)為的正四面體求出外接球的半徑,進(jìn)而求出正三棱錐的高及側(cè)棱長(zhǎng),可得正三棱錐的三條側(cè)棱兩兩相互垂直,進(jìn)而求出體積與表面積,設(shè)內(nèi)切圓的半徑,由等體積,求出內(nèi)切圓的半徑.【詳解】由題意可知:多面體的外接球即正四面體的外接球作面交于,連接,如圖則,且為外接球的直徑,可得,設(shè)三角形的外接圓的半徑為,則,解得,設(shè)外接球的半徑為,則可得,即,解得,設(shè)正三棱錐的高為,因?yàn)椋?,所以,而,所以正三棱錐的三條側(cè)棱兩兩相互垂直,所以,設(shè)內(nèi)切球的半徑為,,即解得:.故答案為:.【點(diǎn)睛】本題考查多面體與球的內(nèi)切和外接問(wèn)題,考查轉(zhuǎn)化與化歸思想,考查空間想象能力、運(yùn)算求解能力,求解時(shí)注意借助幾何體的直觀圖進(jìn)行分析.15、2【解析】
由這五位同學(xué)答對(duì)的題數(shù)分別是,得該組數(shù)據(jù)的平均數(shù),則方差.16、①③④【解析】
先利用導(dǎo)數(shù)求得曲線在點(diǎn)處的切線方程,由此求得與的遞推關(guān)系式,進(jìn)而證得數(shù)列是等比數(shù)列,由此判斷出四個(gè)結(jié)論中正確的結(jié)論編號(hào).【詳解】∵,∴曲線在點(diǎn)處的切線方程為,則.∵,∴,則是首項(xiàng)為1,公比為的等比數(shù)列,從而,,.故所有正確結(jié)論的編號(hào)是①③④.故答案為:①③④【點(diǎn)睛】本小題主要考查曲線的切線方程的求法,考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查等比數(shù)列通項(xiàng)公式和前項(xiàng)和公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】
(1)利用降次公式、輔助角公式化簡(jiǎn)解析式,根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)遞增區(qū)間.(2)先由求得,利用正弦定理得到,結(jié)合余弦定理列方程,求得,由此求得三角形的面積.【詳解】(1)函數(shù),,由,得.所以的單調(diào)遞增區(qū)間為.(2)因?yàn)榍覟殇J角,所以.由及正弦定理可得,又,由余弦定理可得,解得,.【點(diǎn)睛】本小題主要考查三角恒等變換,考查三角函數(shù)單調(diào)區(qū)間的求法,考查正弦定理、余弦定理解三角形,考查三角形的面積公式,屬于中檔題.18、(1);(2).【解析】
(1)在三角形中,利用余弦定理列方程,解方程求得的長(zhǎng),進(jìn)而由三角形的面積公式求得三角形的面積.(2)利用誘導(dǎo)公式求得,進(jìn)而求得,利用兩角差的正弦公式,求得,在三角形中利用正弦定理求得,在三角形中利用余弦定理求得的長(zhǎng).【詳解】(1)在中,,解得,.(2)在中,,..【點(diǎn)睛】本小題主要考查正弦定理、余弦定理解三角形,考查三角形的面積公式,屬于中檔題.19、(Ⅰ);(Ⅱ).【解析】試題分析:(1)根據(jù)零點(diǎn)分區(qū)間法,去掉絕對(duì)值解不等式;(2)根據(jù)絕對(duì)值不等式的性質(zhì)得,因此將問(wèn)題轉(zhuǎn)化為恒成立,借此不等式即可.試題解析:(Ⅰ)由得,,或,或解得:所以原不等式的解集為.(Ⅱ)由不等式的性質(zhì)得:,要使不等式恒成立,則當(dāng)時(shí),不等式恒成立;當(dāng)時(shí),解不等式得.綜上.所以實(shí)數(shù)的取值范圍為.20、(1)0.4;(2);(3)應(yīng)選擇方案,理由見解析【解析】
(1)根據(jù)頻率分布直方圖,可求得該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單的頻率,即可估算其概率;(2)根據(jù)獨(dú)立重復(fù)試驗(yàn)概率求法,先求得四人中有0人、1人選擇方案的概率,再由對(duì)立事件概率性質(zhì)即可求得至少有兩名騎手選擇方案的概率;(3)設(shè)騎手每日完成外賣業(yè)務(wù)量為件,分別表示出方案的日工資和方案的日工資函數(shù)解析式,即可計(jì)算兩種計(jì)算方式下的數(shù)學(xué)期望,并根據(jù)數(shù)學(xué)期望作出選擇.【詳解】(1)設(shè)事件為“隨機(jī)選取一天,這一天該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單”.根據(jù)頻率分布直方圖可知快餐店的人均日外賣業(yè)務(wù)量不少于65單的頻率分別為,∵,∴估計(jì)為0.4.(2)設(shè)事件′為“甲、乙、丙、丁四名騎手中至少有兩名騎手選擇方案”,設(shè)事件,為“甲、乙、丙、丁四名騎手中恰有人選擇方案”,則,所以四名騎手中至少有兩名騎手選擇方案的概率為.(3)設(shè)騎手每日完成外賣業(yè)務(wù)量為件,方案的日工資,方案的日工資,所以隨機(jī)變量的分布列為1601802002202402602800.050.050.20.30.20.150.05;同理,隨機(jī)變量的分布列為1501802302803300.30.30.20.150.05.∵,∴建議騎手應(yīng)選擇方案.【點(diǎn)睛】本題考查了頻率分布直方圖的簡(jiǎn)單應(yīng)用,獨(dú)立重復(fù)試驗(yàn)概率的求法,數(shù)學(xué)期望的求法并由期望作出方案選擇,屬于中檔題.21、(Ⅰ)詳見解析
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 半年工作總結(jié)模板
- DB2201T 62-2024 肉牛運(yùn)輸應(yīng)激綜合征防治技術(shù)規(guī)范
- 職業(yè)導(dǎo)論-房地產(chǎn)經(jīng)紀(jì)人《職業(yè)導(dǎo)論》押題密卷1
- 房地產(chǎn)經(jīng)紀(jì)操作實(shí)務(wù)-《房地產(chǎn)經(jīng)紀(jì)操作實(shí)務(wù)》押題密卷1
- 人資年度工作總結(jié)模板
- 農(nóng)學(xué)碩士答辯指南模板
- 年度目標(biāo)達(dá)成總結(jié)模板
- 人教版四年級(jí)數(shù)學(xué)上冊(cè)寒假作業(yè)(六)(含答案)
- 河南省鄭州市2024-2025學(xué)年高二上學(xué)期期末考試 生物(含答案)
- 二零二五年食堂廚具定制設(shè)計(jì)與安裝合同2篇
- 矩形磚砌渠道施工方案
- 大數(shù)據(jù)與人工智能ppt
- 中醫(yī)科特色診療規(guī)范
- 建筑工程一切險(xiǎn)條款版
- PEP小學(xué)六年級(jí)英語(yǔ)上冊(cè)選詞填空專題訓(xùn)練
- 古建筑修繕項(xiàng)目施工規(guī)程(試行)
- GA 844-2018防砸透明材料
- 化學(xué)元素周期表記憶與讀音 元素周期表口訣順口溜
- 非人力資源經(jīng)理的人力資源管理培訓(xùn)(新版)課件
- 鉬氧化物還原過(guò)程中的物相轉(zhuǎn)變規(guī)律及其動(dòng)力學(xué)機(jī)理研究
- (完整word)2019注冊(cè)消防工程師繼續(xù)教育三科試習(xí)題及答案
評(píng)論
0/150
提交評(píng)論