應用舉例1-精講版課件_第1頁
應用舉例1-精講版課件_第2頁
應用舉例1-精講版課件_第3頁
應用舉例1-精講版課件_第4頁
應用舉例1-精講版課件_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

應用舉例高度角度距離正弦定理余弦定理例1、設A、B兩點在河的兩岸,要測量兩點之間的距離。測量者在A的同測,在所在的河岸邊選定一點C,測出AC的距離是55cm,∠BAC=51o,∠ACB=75o,求A、B兩點間的距離(精確到0.1m)分析:已知兩角一邊,可以用正弦定理解三角形解:根據(jù)正弦定理,得答:A,B兩點間的距離為65.7米。例2、A、B兩點都在河的對岸(不可到達),設計一種測量兩點間的距離的方法。分析:用例1的方法,可以計算出河的這一岸的一點C到對岸兩點的距離,再測出∠BCA的大小,借助于余弦定理可以計算出A、B兩點間的距離。解:測量者可以在河岸邊選定兩點C、D,測得CD=a,并且在C、D兩點分別測得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在⊿ADC和⊿BDC中,應用正弦定理得計算出AC和BC后,再在⊿ABC中,應用余弦定理計算出AB兩點間的距離變式訓練:若在河岸選取相距40米的C、D兩點,測得BCA=60,ACD=30,CDB=45,

BDA=60求AB的長練習1、一艘船以32.2nmile/hr的速度向正北航行。在A處看燈塔S在船的北偏東20o的方向,30min后航行到B處,在B處看燈塔在船的北偏東65o的方向,已知距離此燈塔6.5nmile以外的海區(qū)為航行安全區(qū)域,這艘船可以繼續(xù)沿正北方向航行嗎?練習2.自動卸貨汽車的車廂采用液壓機構。設計時需要計算油泵頂桿BC的長度.已知車廂的最大仰角是60°,油泵頂點B與車廂支點A之間的距離為1.95m,AB與水平線之間的夾角為6°20’,AC長為1.40m,計算BC的長(精確到0.01m).

(1)什么是最大仰角?

最大角度最大角度最大角度最大角度(2)例題中涉及一個怎樣的三角形?在△ABC中已知什么,要求什么?CAB練習2.自動卸貨汽車的車廂采用液壓機構。設計時需要計算油泵頂桿BC的長度.已知車廂的最大仰角是60°,油泵頂點B與車廂支點A之間的距離為1.95m,AB與水平線之間的夾角為6°20’,AC長為1.40m,計算BC的長(精確到0.01m).

最大角度最大角度最大角度最大角度

已知△ABC中AB=1.95m,AC=1.40m,夾角∠CAB=66°20′,求BC.解:由余弦定理,得答:頂桿BC約長1.89m

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論