




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某中學(xué)有高中生人,初中生人為了解該校學(xué)生自主鍛煉的時(shí)間,采用分層抽樣的方法從高生和初中生中抽取一個(gè)容量為的樣本.若樣本中高中生恰有人,則的值為()A. B. C. D.2.已知直線過雙曲線C:的左焦點(diǎn)F,且與雙曲線C在第二象限交于點(diǎn)A,若(O為坐標(biāo)原點(diǎn)),則雙曲線C的離心率為A. B. C. D.3.函數(shù)與在上最多有n個(gè)交點(diǎn),交點(diǎn)分別為(,……,n),則()A.7 B.8 C.9 D.104.港珠澳大橋于2018年10月2刻日正式通車,它是中國境內(nèi)一座連接香港、珠海和澳門的橋隧工程,橋隧全長(zhǎng)55千米.橋面為雙向六車道高速公路,大橋通行限速100km/h,現(xiàn)對(duì)大橋某路段上1000輛汽車的行駛速度進(jìn)行抽樣調(diào)查.畫出頻率分布直方圖(如圖),根據(jù)直方圖估計(jì)在此路段上汽車行駛速度在區(qū)間[85,90)的車輛數(shù)和行駛速度超過90km/h的頻率分別為()A.300, B.300, C.60, D.60,5.點(diǎn)在曲線上,過作軸垂線,設(shè)與曲線交于點(diǎn),,且點(diǎn)的縱坐標(biāo)始終為0,則稱點(diǎn)為曲線上的“水平黃金點(diǎn)”,則曲線上的“水平黃金點(diǎn)”的個(gè)數(shù)為()A.0 B.1 C.2 D.36.已知數(shù)列是公比為的正項(xiàng)等比數(shù)列,若、滿足,則的最小值為()A. B. C. D.7.已知三棱錐的外接球半徑為2,且球心為線段的中點(diǎn),則三棱錐的體積的最大值為()A. B. C. D.8.下圖中的圖案是我國古代建筑中的一種裝飾圖案,形若銅錢,寓意富貴吉祥.在圓內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)取自陰影區(qū)域內(nèi)(陰影部分由四條四分之一圓弧圍成)的概率是()A. B. C. D.9.函數(shù)圖像可能是()A. B. C. D.10.已知集合,則集合()A. B. C. D.11.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個(gè)相關(guān)的問題:將1到2020這2020個(gè)自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個(gè)數(shù)列,則該數(shù)列各項(xiàng)之和為()A.56383 B.57171 C.59189 D.6124212.已知實(shí)數(shù)、滿足約束條件,則的最大值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點(diǎn)(1,1)處的切線與軸及直線=所圍成的三角形面積為,則實(shí)數(shù)=____。14.已知函數(shù)函數(shù),其中,若函數(shù)恰有4個(gè)零點(diǎn),則的取值范圍是__________.15.從一箱產(chǎn)品中隨機(jī)地抽取一件,設(shè)事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,則事件“抽到的產(chǎn)品不是一等品”的概率為________16.《九章算術(shù)》第七章“盈不足”中第一題:“今有共買物,人出八,盈三錢;人出七,不足四,問人數(shù)物價(jià)各幾何?”借用我們現(xiàn)在的說法可以表述為:有幾個(gè)人合買一件物品,每人出8元,則付完錢后還多3元;若每人出7元,則還差4元才夠付款.問他們的人數(shù)和物品價(jià)格?答:一共有_____人;所合買的物品價(jià)格為_______元.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,直線過橢圓的右焦點(diǎn),過的直線交橢圓于兩點(diǎn)(均異于左、右頂點(diǎn)).(1)求橢圓的方程;(2)已知直線,為橢圓的右頂點(diǎn).若直線交于點(diǎn),直線交于點(diǎn),試判斷是否為定值,若是,求出定值;若不是,說明理由.18.(12分)如圖,直三棱柱中,底面為等腰直角三角形,,,,分別為,的中點(diǎn),為棱上一點(diǎn),若平面.(1)求線段的長(zhǎng);(2)求二面角的余弦值.19.(12分)在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對(duì)某種產(chǎn)品的研發(fā)投入.為了對(duì)新研發(fā)的產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格試銷,得到一組檢測(cè)數(shù)據(jù)如表所示:試銷價(jià)格(元)產(chǎn)品銷量(件)已知變量且有線性負(fù)相關(guān)關(guān)系,現(xiàn)有甲、乙、丙三位同學(xué)通過計(jì)算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學(xué)的計(jì)算結(jié)果是正確的.(1)試判斷誰的計(jì)算結(jié)果正確?(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢測(cè)數(shù)據(jù)的誤差不超過,則稱該檢測(cè)數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測(cè)數(shù)據(jù)中隨機(jī)抽取個(gè),求“理想數(shù)據(jù)”的個(gè)數(shù)的分布列和數(shù)學(xué)期望.20.(12分)如圖,在三棱錐中,,,,平面平面,、分別為、中點(diǎn).(1)求證:;(2)求二面角的大小.21.(12分)某生物硏究小組準(zhǔn)備探究某地區(qū)蜻蜓的翼長(zhǎng)分布規(guī)律,據(jù)統(tǒng)計(jì)該地區(qū)蜻蜓有兩種,且這兩種的個(gè)體數(shù)量大致相等,記種蜻蜓和種蜻蜓的翼長(zhǎng)(單位:)分別為隨機(jī)變量,其中服從正態(tài)分布,服從正態(tài)分布.(Ⅰ)從該地區(qū)的蜻蜓中隨機(jī)捕捉一只,求這只蜻蜓的翼長(zhǎng)在區(qū)間的概率;(Ⅱ)記該地區(qū)蜻蜓的翼長(zhǎng)為隨機(jī)變量,若用正態(tài)分布來近似描述的分布,請(qǐng)你根據(jù)(Ⅰ)中的結(jié)果,求參數(shù)和的值(精確到0.1);(Ⅲ)在(Ⅱ)的條件下,從該地區(qū)的蜻蜓中隨機(jī)捕捉3只,記這3只中翼長(zhǎng)在區(qū)間的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望(分布列寫出計(jì)算表達(dá)式即可).注:若,則,,.22.(10分)已知函數(shù),.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
利用某一層樣本數(shù)等于某一層的總體個(gè)數(shù)乘以抽樣比計(jì)算即可.【詳解】由題意,,解得.故選:B.【點(diǎn)睛】本題考查簡(jiǎn)單隨機(jī)抽樣中的分層抽樣,某一層樣本數(shù)等于某一層的總體個(gè)數(shù)乘以抽樣比,本題是一道基礎(chǔ)題.2、B【解析】
直線的傾斜角為,易得.設(shè)雙曲線C的右焦點(diǎn)為E,可得中,,則,所以雙曲線C的離心率為.故選B.3、C【解析】
根據(jù)直線過定點(diǎn),采用數(shù)形結(jié)合,可得最多交點(diǎn)個(gè)數(shù),然后利用對(duì)稱性,可得結(jié)果.【詳解】由題可知:直線過定點(diǎn)且在是關(guān)于對(duì)稱如圖通過圖像可知:直線與最多有9個(gè)交點(diǎn)同時(shí)點(diǎn)左、右邊各四個(gè)交點(diǎn)關(guān)于對(duì)稱所以故選:C【點(diǎn)睛】本題考查函數(shù)對(duì)稱性的應(yīng)用,數(shù)形結(jié)合,難點(diǎn)在于正確畫出圖像,同時(shí)掌握基礎(chǔ)函數(shù)的性質(zhì),屬難題.4、B【解析】
由頻率分布直方圖求出在此路段上汽車行駛速度在區(qū)間的頻率即可得到車輛數(shù),同時(shí)利用頻率分布直方圖能求行駛速度超過的頻率.【詳解】由頻率分布直方圖得:在此路段上汽車行駛速度在區(qū)間的頻率為,∴在此路段上汽車行駛速度在區(qū)間的車輛數(shù)為:,行駛速度超過的頻率為:.故選:B.【點(diǎn)睛】本題考查頻數(shù)、頻率的求法,考查頻率分布直方圖的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.5、C【解析】
設(shè),則,則,即可得,設(shè),利用導(dǎo)函數(shù)判斷的零點(diǎn)的個(gè)數(shù),即為所求.【詳解】設(shè),則,所以,依題意可得,設(shè),則,當(dāng)時(shí),,則單調(diào)遞減;當(dāng)時(shí),,則單調(diào)遞增,所以,且,有兩個(gè)不同的解,所以曲線上的“水平黃金點(diǎn)”的個(gè)數(shù)為2.故選:C【點(diǎn)睛】本題考查利用導(dǎo)函數(shù)處理零點(diǎn)問題,考查向量的坐標(biāo)運(yùn)算,考查零點(diǎn)存在性定理的應(yīng)用.6、B【解析】
利用等比數(shù)列的通項(xiàng)公式和指數(shù)冪的運(yùn)算法則、指數(shù)函數(shù)的單調(diào)性求得再根據(jù)此范圍求的最小值.【詳解】數(shù)列是公比為的正項(xiàng)等比數(shù)列,、滿足,由等比數(shù)列的通項(xiàng)公式得,即,,可得,且、都是正整數(shù),求的最小值即求在,且、都是正整數(shù)范圍下求最小值和的最小值,討論、取值.當(dāng)且時(shí),的最小值為.故選:B.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式和指數(shù)冪的運(yùn)算法則、指數(shù)函數(shù)性質(zhì)等基礎(chǔ)知識(shí),考查數(shù)學(xué)運(yùn)算求解能力和分類討論思想,是中等題.7、C【解析】
由題可推斷出和都是直角三角形,設(shè)球心為,要使三棱錐的體積最大,則需滿足,結(jié)合幾何關(guān)系和圖形即可求解【詳解】先畫出圖形,由球心到各點(diǎn)距離相等可得,,故是直角三角形,設(shè),則有,又,所以,當(dāng)且僅當(dāng)時(shí),取最大值4,要使三棱錐體積最大,則需使高,此時(shí),故選:C【點(diǎn)睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎(chǔ)題8、C【解析】令圓的半徑為1,則,故選C.9、D【解析】
先判斷函數(shù)的奇偶性可排除選項(xiàng)A,C,當(dāng)時(shí),可分析函數(shù)值為正,即可判斷選項(xiàng).【詳解】,,即函數(shù)為偶函數(shù),故排除選項(xiàng)A,C,當(dāng)正數(shù)越來越小,趨近于0時(shí),,所以函數(shù),故排除選項(xiàng)B,故選:D【點(diǎn)睛】本題主要考查了函數(shù)的奇偶性,識(shí)別函數(shù)的圖象,屬于中檔題.10、D【解析】
弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點(diǎn)睛】本題考查集合的定義,涉及到解絕對(duì)值不等式,是一道基礎(chǔ)題.11、C【解析】
根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構(gòu)成等差數(shù)列,然后根據(jù)等差數(shù)列的前項(xiàng)和公式,可得結(jié)果.【詳解】被5除余3且被7除余2的正整數(shù)構(gòu)成首項(xiàng)為23,公差為的等差數(shù)列,記數(shù)列則令,解得.故該數(shù)列各項(xiàng)之和為.故選:C.【點(diǎn)睛】本題考查等差數(shù)列的應(yīng)用,屬基礎(chǔ)題。12、C【解析】
作出不等式組表示的平面區(qū)域,作出目標(biāo)函數(shù)對(duì)應(yīng)的直線,結(jié)合圖象知當(dāng)直線過點(diǎn)時(shí),取得最大值.【詳解】解:作出約束條件表示的可行域是以為頂點(diǎn)的三角形及其內(nèi)部,如下圖表示:當(dāng)目標(biāo)函數(shù)經(jīng)過點(diǎn)時(shí),取得最大值,最大值為.故選:C.【點(diǎn)睛】本題主要考查線性規(guī)劃等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,數(shù)形結(jié)合思想,應(yīng)用意識(shí),屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、或1【解析】
利用導(dǎo)數(shù)的幾何意義,可得切線的斜率,以及切線方程,求得切線與軸和的交點(diǎn),由三角形的面積公式可得所求值.【詳解】的導(dǎo)數(shù)為,可得切線的斜率為3,切線方程為,可得,可得切線與軸的交點(diǎn)為,,切線與的交點(diǎn)為,可得,解得或?!军c(diǎn)睛】本題主要考查利用導(dǎo)數(shù)求切線方程,以及直線方程的運(yùn)用,三角形的面積求法。14、【解析】∵,∴,∵函數(shù)y=f(x)?g(x)恰好有四個(gè)零點(diǎn),∴方程f(x)?g(x)=0有四個(gè)解,即f(x)+f(2?x)?b=0有四個(gè)解,即函數(shù)y=f(x)+f(2?x)與y=b的圖象有四個(gè)交點(diǎn),,作函數(shù)y=f(x)+f(2?x)與y=b的圖象如下,,結(jié)合圖象可知,<b<2,故答案為.點(diǎn)睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當(dāng)出現(xiàn)f(f(a))的形式時(shí),應(yīng)從內(nèi)到外依次求值.(2)當(dāng)給出函數(shù)值求自變量的值時(shí),先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記要代入檢驗(yàn),看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍.15、0.35【解析】
根據(jù)對(duì)立事件的概率和為1,結(jié)合題意,即可求出結(jié)果來.【詳解】解:由題意知本題是一個(gè)對(duì)立事件的概率,抽到的不是一等品的對(duì)立事件是抽到一等品,,抽到不是一等品的概率是,故答案為:.【點(diǎn)睛】本題考查了求互斥事件與對(duì)立事件的概率的應(yīng)用問題,屬于基礎(chǔ)題.16、753【解析】
根據(jù)物品價(jià)格不變,可設(shè)共有x人,列出方程求解即可【詳解】設(shè)共有人,由題意知,解得,可知商品價(jià)格為53元.即共有7人,商品價(jià)格為53元.【點(diǎn)睛】本題主要考查了數(shù)學(xué)文化及一元一次方程的應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)定值為0.【解析】
(1)根據(jù)直線方程求焦點(diǎn)坐標(biāo),即得c,再根據(jù)離心率得,(2)先設(shè)直線方程以及各點(diǎn)坐標(biāo),化簡(jiǎn),再聯(lián)立直線方程與橢圓方程,利用韋達(dá)定理代入化簡(jiǎn)得結(jié)果.【詳解】(1)因?yàn)橹本€過橢圓的右焦點(diǎn),所以,因?yàn)殡x心率為,所以,(2),設(shè)直線,則因此由得,所以,因此即【點(diǎn)睛】本題考查橢圓方程以及直線與橢圓位置關(guān)系,考查綜合分析求解能力,屬中檔題.18、(1)(2)【解析】
(1)先證得,設(shè)與交于點(diǎn),在中解直角三角形求得,由此求得的值.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出二面角的余弦值.【詳解】(1)由題意,,設(shè)與交于點(diǎn),在中,可求得,則,可求得,則(2)以為原點(diǎn),方向?yàn)檩S,方向?yàn)檩S,方向?yàn)檩S,建立空間直角坐標(biāo)系.,,,,,易得平面的法向量為.,,易得平面的法向量為.設(shè)二面角為,由圖可知為銳角,所以.即二面角的余弦值為.【點(diǎn)睛】本小題主要考查根據(jù)線面垂直求邊長(zhǎng),考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19、(1)乙同學(xué)正確(2)分布列見解析,【解析】
(1)由已知可得甲不正確,求出樣本中心點(diǎn)代入驗(yàn)證,即可得出結(jié)論;(2)根據(jù)(1)中得到的回歸方程,求出估值,得到“理想數(shù)據(jù)”的個(gè)數(shù),確定“理想數(shù)據(jù)”的個(gè)數(shù)的可能值,并求出概率,得到分布列,即可求解.【詳解】(1)已知變量具有線性負(fù)相關(guān)關(guān)系,故甲不正確,,代入兩個(gè)回歸方程,驗(yàn)證乙同學(xué)正確,故回歸方程為:(2)由(1)得到的回歸方程,計(jì)算估計(jì)數(shù)據(jù)如下表:“理想數(shù)據(jù)”有3個(gè),故“理想數(shù)據(jù)”的個(gè)數(shù)的取值為:.,,于是“理想數(shù)據(jù)”的個(gè)數(shù)的分布列【點(diǎn)睛】本題考查樣本回歸中心點(diǎn)與線性回歸直線方程關(guān)系,以及離散型隨機(jī)變量的分布列和期望,意在考查邏輯推理、數(shù)學(xué)計(jì)算能力,屬于中檔題.20、(1)證明見解析;(2)60°.【解析】試題分析:(1)連結(jié)PD,由題意可得,則AB⊥平面PDE,;(2)法一:結(jié)合幾何關(guān)系做出二面角的平面角,計(jì)算可得其正切值為,故二面角的大小為;法二:以D為原點(diǎn)建立空間直角坐標(biāo)系,計(jì)算可得平面PBE的法向量.平面PAB的法向量為.據(jù)此計(jì)算可得二面角的大小為.試題解析:(1)連結(jié)PD,PA=PB,PDAB.,BCAB,DEAB.又,AB平面PDE,PE平面PDE,∴ABPE.(2)法一:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.則DEPD,又EDAB,PD平面AB=D,DE平面PAB,過D做DF垂直PB與F,連接EF,則EFPB,∠DFE為所求二面角的平面角,則:DE=,DF=,則,故二面角的大小為法二:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.如圖,以D為原點(diǎn)建立空間直角坐標(biāo)系,B(1,0,0),P(0,0,),E(0,,0),=(1,0,)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 理論與實(shí)踐結(jié)合的信息化物流師試題及答案
- 初中開心教育主題班會(huì)
- 如何做好三考績(jī)效管理
- 2024計(jì)算機(jī)二級(jí)考試復(fù)習(xí)手冊(cè)試題及答案
- 2024年育嬰師考試過關(guān)秘籍試題及答案
- 黑龍江生態(tài)工程職業(yè)學(xué)院《物聯(lián)網(wǎng)系統(tǒng)設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 黑龍江省佳木斯市2024-2025學(xué)年初三下學(xué)期第一次調(diào)研考試化學(xué)試題試卷含解析
- 黑龍江省哈爾濱市呼蘭區(qū)2025屆數(shù)學(xué)三下期末復(fù)習(xí)檢測(cè)模擬試題含解析
- 2024年育嬰師考試所有知識(shí)點(diǎn)試題及答案
- 黑龍江省大慶四中2025屆高三年級(jí)下學(xué)期第三次摸底考試生物試題含解析
- 截流式合流制管道系統(tǒng)的特點(diǎn)與使用條件課件
- (站表2-1)施工單位工程項(xiàng)目主要管理人員備案表
- 中班美術(shù)《我心中的太陽》繪畫課件幼兒園優(yōu)質(zhì)課公開課
- 應(yīng)急管理工作檢查記錄表
- 《雷鋒叔叔你在哪里》教學(xué)案例
- DB32-T 2798-2015高性能瀝青路面施工技術(shù)規(guī)范-(高清現(xiàn)行)
- 《機(jī)械設(shè)計(jì)基礎(chǔ)》課程思政教學(xué)案例(一等獎(jiǎng))
- 譯林版五年級(jí)英語下冊(cè) Unit 6 第4課時(shí) 教學(xué)課件PPT小學(xué)公開課
- API-620 大型焊接低壓儲(chǔ)罐設(shè)計(jì)與建造
- 年產(chǎn)300噸蓮子蛋白粉工廠的設(shè)計(jì)
- 箱變施工安全文明保證措施
評(píng)論
0/150
提交評(píng)論