2023屆貴州省黔南布依族苗族自治州都勻市第一中學數(shù)學高三上期末綜合測試試題含解析_第1頁
2023屆貴州省黔南布依族苗族自治州都勻市第一中學數(shù)學高三上期末綜合測試試題含解析_第2頁
2023屆貴州省黔南布依族苗族自治州都勻市第一中學數(shù)學高三上期末綜合測試試題含解析_第3頁
2023屆貴州省黔南布依族苗族自治州都勻市第一中學數(shù)學高三上期末綜合測試試題含解析_第4頁
2023屆貴州省黔南布依族苗族自治州都勻市第一中學數(shù)學高三上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年高三上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關(guān)系為()A.b>c>a B.c>b>a C.a(chǎn)>b>c D.b>a>c2.棱長為2的正方體內(nèi)有一個內(nèi)切球,過正方體中兩條異面直線,的中點作直線,則該直線被球面截在球內(nèi)的線段的長為()A. B. C. D.13.一只螞蟻在邊長為的正三角形區(qū)域內(nèi)隨機爬行,則在離三個頂點距離都大于的區(qū)域內(nèi)的概率為()A. B. C. D.4.在平面直角坐標系中,已知角的頂點與原點重合,始邊與軸的非負半軸重合,終邊落在直線上,則()A. B. C. D.5.已知定義在上的函數(shù)的周期為4,當時,,則()A. B. C. D.6.若函數(shù)的圖象過點,則它的一條對稱軸方程可能是()A. B. C. D.7.記的最大值和最小值分別為和.若平面向量、、,滿足,則()A. B.C. D.8.若為虛數(shù)單位,則復數(shù)的共軛復數(shù)在復平面內(nèi)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知集合,B={y∈N|y=x﹣1,x∈A},則A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}10.已知,則()A.5 B. C.13 D.11.已知,則的值等于()A. B. C. D.12.已知,,,,.若實數(shù),滿足不等式組,則目標函數(shù)()A.有最大值,無最小值 B.有最大值,有最小值C.無最大值,有最小值 D.無最大值,無最小值二、填空題:本題共4小題,每小題5分,共20分。13.已知盒中有2個紅球,2個黃球,且每種顏色的兩個球均按,編號,現(xiàn)從中摸出2個球(除顏色與編號外球沒有區(qū)別),則恰好同時包含字母,的概率為________.14.已知直角坐標系中起點為坐標原點的向量滿足,且,,,存在,對于任意的實數(shù),不等式,則實數(shù)的取值范圍是______.15.若隨機變量的分布列如表所示,則______,______.-10116.設Sn為數(shù)列{an}的前n項和,若an0,a1=1,且2Sn=an(an+t),n∈N*,則S10=_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)若曲線在點處的切線方程為,求,;(2)當時,,求實數(shù)的取值范圍.18.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)若直線與曲線交于、兩點,求的面積.19.(12分)設函數(shù).(1)若,時,在上單調(diào)遞減,求的取值范圍;(2)若,,,求證:當時,.20.(12分)選修4-4:坐標系與參數(shù)方程已知曲線的參數(shù)方程是(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是.(1)寫出的極坐標方程和的直角坐標方程;(2)已知點、的極坐標分別為和,直線與曲線相交于,兩點,射線與曲線相交于點,射線與曲線相交于點,求的值.21.(12分)已知的內(nèi)角、、的對邊分別為、、,滿足.有三個條件:①;②;③.其中三個條件中僅有兩個正確,請選出正確的條件完成下面兩個問題:(1)求;(2)設為邊上一點,且,求的面積.22.(10分)已知函數(shù).(1)當時,解關(guān)于的不等式;(2)若對任意,都存在,使得不等式成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性直接求解.【詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關(guān)系為b>c>a.故選:A.【點睛】本題考查三個數(shù)的大小的判斷,考查指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性等基礎知識,考查運算求解能力,是基礎題.2、C【解析】

連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,推導出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內(nèi)的線段的長.【詳解】如圖,MN為該直線被球面截在球內(nèi)的線段連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點睛】本題主要考查該直線被球面截在球內(nèi)的線段的長的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎知識,考查運算求解能力,是中檔題.3、A【解析】

求出滿足條件的正的面積,再求出滿足條件的正內(nèi)的點到頂點、、的距離均不小于的圖形的面積,然后代入幾何概型的概率公式即可得到答案.【詳解】滿足條件的正如下圖所示:其中正的面積為,滿足到正的頂點、、的距離均不小于的圖形平面區(qū)域如圖中陰影部分所示,陰影部分區(qū)域的面積為.則使取到的點到三個頂點、、的距離都大于的概率是.故選:A.【點睛】本題考查幾何概型概率公式、三角形的面積公式、扇形的面積公式的應用,考查計算能力,屬于中等題.4、C【解析】

利用誘導公式以及二倍角公式,將化簡為關(guān)于的形式,結(jié)合終邊所在的直線可知的值,從而可求的值.【詳解】因為,且,所以.故選:C.【點睛】本題考查三角函數(shù)中的誘導公式以及三角恒等變換中的二倍角公式,屬于給角求值類型的問題,難度一般.求解值的兩種方法:(1)分別求解出的值,再求出結(jié)果;(2)將變形為,利用的值求出結(jié)果.5、A【解析】

因為給出的解析式只適用于,所以利用周期性,將轉(zhuǎn)化為,再與一起代入解析式,利用對數(shù)恒等式和對數(shù)的運算性質(zhì),即可求得結(jié)果.【詳解】定義在上的函數(shù)的周期為4,當時,,,,.故選:A.【點睛】本題考查了利用函數(shù)的周期性求函數(shù)值,對數(shù)的運算性質(zhì),屬于中檔題.6、B【解析】

把已知點坐標代入求出,然后驗證各選項.【詳解】由題意,,或,,不妨取或,若,則函數(shù)為,四個選項都不合題意,若,則函數(shù)為,只有時,,即是對稱軸.故選:B.【點睛】本題考查正弦型復合函數(shù)的對稱軸,掌握正弦函數(shù)的性質(zhì)是解題關(guān)鍵.7、A【解析】

設為、的夾角,根據(jù)題意求得,然后建立平面直角坐標系,設,,,根據(jù)平面向量數(shù)量積的坐標運算得出點的軌跡方程,將和轉(zhuǎn)化為圓上的點到定點距離,利用數(shù)形結(jié)合思想可得出結(jié)果.【詳解】由已知可得,則,,,建立平面直角坐標系,設,,,由,可得,即,化簡得點的軌跡方程為,則,則轉(zhuǎn)化為圓上的點與點的距離,,,,轉(zhuǎn)化為圓上的點與點的距離,,.故選:A.【點睛】本題考查和向量與差向量模最值的求解,將向量坐標化,將問題轉(zhuǎn)化為圓上的點到定點距離的最值問題是解答的關(guān)鍵,考查化歸與轉(zhuǎn)化思想與數(shù)形結(jié)合思想的應用,屬于中等題.8、B【解析】

由共軛復數(shù)的定義得到,通過三角函數(shù)值的正負,以及復數(shù)的幾何意義即得解【詳解】由題意得,因為,,所以在復平面內(nèi)對應的點位于第二象限.故選:B【點睛】本題考查了共軛復數(shù)的概念及復數(shù)的幾何意義,考查了學生概念理解,數(shù)形結(jié)合,數(shù)學運算的能力,屬于基礎題.9、A【解析】

解出集合A和B即可求得兩個集合的并集.【詳解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故選:A.【點睛】此題考查求集合的并集,關(guān)鍵在于準確求解不等式,根據(jù)描述法表示的集合,準確寫出集合中的元素.10、C【解析】

先化簡復數(shù),再求,最后求即可.【詳解】解:,,故選:C【點睛】考查復數(shù)的運算,是基礎題.11、A【解析】

由余弦公式的二倍角可得,,再由誘導公式有,所以【詳解】∵∴由余弦公式的二倍角展開式有又∵∴故選:A【點睛】本題考查了學生對二倍角公式的應用,要求學生熟練掌握三角函數(shù)中的誘導公式,屬于簡單題12、B【解析】

判斷直線與縱軸交點的位置,畫出可行解域,即可判斷出目標函數(shù)的最值情況.【詳解】由,,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標函數(shù)一定有最大值和最小值.故選:B【點睛】本題考查了目標函數(shù)最值是否存在問題,考查了數(shù)形結(jié)合思想,考查了不等式的性質(zhì)應用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)組合數(shù)得出所有情況數(shù)及兩個球顏色不相同的情況數(shù),讓兩個球顏色不相同的情況數(shù)除以總情況數(shù)即為所求的概率.【詳解】從袋中任意地同時摸出兩個球共種情況,其中有種情況是兩個球顏色不相同;故其概率是故答案為:.【點睛】本題主要考查了求事件概率,解題關(guān)鍵是掌握概率的基礎知識和組合數(shù)計算公式,考查了分析能力和計算能力,屬于基礎題.14、【解析】

由題意可設,,,由向量的坐標運算,以及恒成立思想可設,的最小值即為點,到直線的距離,求得,可得不大于.【詳解】解:,且,可設,,,,可得,可得的終點均在直線上,由于為任意實數(shù),可得時,的最小值即為點到直線的距離,可得,對于任意的實數(shù),不等式,可得,故答案為:.【點睛】本題主要考查向量的模的求法,以及兩點的距離的運用,考查直線方程的運用,以及點到直線的距離,考查運算能力,屬于中檔題.15、【解析】

首先求得a的值,然后利用均值的性質(zhì)計算均值,最后求得的值,由方差的性質(zhì)計算的值即可.【詳解】由題意可知,解得(舍去)或.則,則,由方差的計算性質(zhì)得.【點睛】本題主要考查分布列的性質(zhì),均值的計算公式,方差的計算公式,方差的性質(zhì)等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.16、55【解析】

由求出.由,可得,兩式相減,可得數(shù)列是以1為首項,1為公差的等差數(shù)列,即求.【詳解】由題意,當n=1時,,當時,由,可得,兩式相減,可得,整理得,,即,∴數(shù)列是以1為首項,1為公差的等差數(shù)列,.故答案為:55.【點睛】本題考查求數(shù)列的前項和,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)對函數(shù)求導,運用可求得的值,再由在直線上,可求得的值;(2)由已知可得恒成立,構(gòu)造函數(shù),對函數(shù)求導,討論和0的大小關(guān)系,結(jié)合單調(diào)性求出最大值即可求得的范圍.【詳解】(1)由題得,因為在點與相切所以,∴(2)由得,令,只需,設(),當時,,在時為增函數(shù),所以,舍;當時,開口向上,對稱軸為,,所以在時為增函數(shù),所以,舍;當時,二次函數(shù)開口向下,且,所以在時有一個零點,在時,在時,①當即時,在小于零,所以在時為減函數(shù),所以,符合題意;②當即時,在大于零,所以在時為增函數(shù),所以,舍.綜上所述:實數(shù)的取值范圍為【點睛】本題考查函數(shù)的導數(shù),利用導數(shù)求函數(shù)的單調(diào)區(qū)間及函數(shù)的最小值,屬于中檔題.處理函數(shù)單調(diào)性問題時,注意利用導函數(shù)的正負,特別是已知單調(diào)性問題,轉(zhuǎn)化為函數(shù)導數(shù)恒不小于零,或恒小于零,再分離參數(shù)求解,求函數(shù)最值時分析好單調(diào)性再求極值,從而求出函數(shù)最值.18、(1),;(2).【解析】

(1)在直線的參數(shù)方程中消去參數(shù)可得出直線的普通方程,在曲線的極坐標方程兩邊同時乘以,結(jié)合可將曲線的極坐標方程化為直角坐標方程;(2)計算出直線截圓所得弦長,并計算出原點到直線的距離,利用三角形的面積公式可求得的面積.【詳解】(1)由得,故直線的普通方程是.由,得,代入公式得,得,故曲線的直角坐標方程是;(2)因為曲線的圓心為,半徑為,圓心到直線的距離為,則弦長.又到直線的距離為,所以.【點睛】本題考查參數(shù)方程、極坐標方程與普通方程之間的轉(zhuǎn)化,同時也考查了直線與圓中三角形面積的計算,考查計算能力,屬于中等題.19、(1)(2)見解析【解析】

(1)在上單調(diào)遞減等價于在恒成立,分離參數(shù)即可解決.(2)先對求導,化簡后根據(jù)零點存在性定理判斷唯一零點所在區(qū)間,構(gòu)造函數(shù)利用基本不等式求解即可.【詳解】(1),時,,,∵在上單調(diào)遞減.∴,.令,,時,;時,,∴在上為減函數(shù),在上為增函數(shù).∴,∴.∴的取值范圍為.(2)若,,時,,,令,顯然在上為增函數(shù).又,,∴有唯一零點.且,時,,;時,,,∴在上為增函數(shù),在上為減函數(shù).∴.又,∴,,.∴.,.∴當時,.【點睛】此題考查函數(shù)定區(qū)間上單調(diào),和零點存在性定理等知識點,難點為找到最值后的構(gòu)造函數(shù)求值域,屬于較難題目.20、(1)線的普通方程為,曲線的直角坐標方程為;(2).【解析】試題分析:(1)(1)利用cos2θ+sin2θ=1,即可曲線C1的參數(shù)方程化為普通方程,進而利用即可化為極坐標方程,同理可得曲線C2的直角坐標方程;

(2)由過的圓心,得得,設,,代入中即可得解.試題解析:(1)曲線的普通方程為,化成極坐標方程為曲線的直角坐標方程為(2)在直角坐標系下,/r

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論