高等數(shù)學(xué) 第八章空間解析幾何課件_第1頁(yè)
高等數(shù)學(xué) 第八章空間解析幾何課件_第2頁(yè)
高等數(shù)學(xué) 第八章空間解析幾何課件_第3頁(yè)
高等數(shù)學(xué) 第八章空間解析幾何課件_第4頁(yè)
高等數(shù)學(xué) 第八章空間解析幾何課件_第5頁(yè)
已閱讀5頁(yè),還剩57頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第八章空間解析幾何與向量代數(shù)第一節(jié)向量及其線性運(yùn)算第二節(jié)數(shù)量積向量積*混合積第三節(jié)曲面及其方程第四節(jié)空間曲線及其方程第五節(jié)平面及其方程第六節(jié)空間直線及其方程第八章空間解析幾何與向量代數(shù)第一節(jié)向量及其線性運(yùn)算第一、向量概念二、向量的線性運(yùn)算三、空間直角坐標(biāo)系四、利用坐標(biāo)作向量的線性運(yùn)算五、向量的模、方向角、投影§8.1向量及其運(yùn)算一、向量概念二、向量的線性運(yùn)算三、空間直角坐表示法:向量的模:向量的大小,一、向量的概念向量:(又稱矢量).既有大小,又有方向的量稱為向量向徑(矢徑):自由向量:與起點(diǎn)無(wú)關(guān)的向量.起點(diǎn)為原點(diǎn)的向量.單位向量:模為1的向量,零向量:模為0的向量,有向線段

表示法:向量的模:向量的大小,一、向量的概念向量:(又稱矢規(guī)定:零向量與任何向量平行

;若向量a與b大小相等,方向相同,則稱a與b相等,記作a=b;若向量a與b方向相同或相反,則稱a與b平行,

a∥b;與a

的模相同,但方向相反的向量稱為a

的負(fù)向量,記作因平行向量可平移到同一直線上,故兩向量平行又稱兩向量共線

.若k(≥3)個(gè)向量經(jīng)平移可移到同一平面上,則稱此k個(gè)向量共面

.記作-a;規(guī)定:零向量與任何向量平行;若向量a與b大小相等,二、向量的線性運(yùn)算1.向量的加法三角形法則:平行四邊形法則:運(yùn)算規(guī)律:交換律結(jié)合律三角形法則可推廣到多個(gè)向量相加.二、向量的線性運(yùn)算1.向量的加法三角形法則:平行四邊形法則高等數(shù)學(xué)第八章空間解析幾何課件2.向量的減法三角不等式2.向量的減法三角不等式3.向量與數(shù)的乘法是一個(gè)數(shù),與a

的乘積是一個(gè)新向量,記作特別的:3.向量與數(shù)的乘法是一個(gè)數(shù),與a的乘積是一個(gè)結(jié)合律運(yùn)算律:分配律因此結(jié)合律運(yùn)算律:分配律因此定理1.

設(shè)

a

為非零向量,則(為唯一實(shí)數(shù))a∥b..OiPxx點(diǎn)P實(shí)數(shù)x軸上點(diǎn)P的坐標(biāo)為x的充分必要條件是

直線上點(diǎn)的坐標(biāo)平面上點(diǎn)的坐標(biāo)OQpMxyij點(diǎn)M向量

平面的上點(diǎn)M的坐標(biāo)為(x,y)的充分必要條件是

向量定理1.設(shè)a為非零向量,則(為唯一實(shí)數(shù))a∥b證明:

假設(shè)存在唯一的實(shí)數(shù),使得由向量與數(shù)乘法定義可知與平行.與平行假設(shè)與同向,取若則與同向,與同向.從而而,故證明:假設(shè)存在唯一的實(shí)數(shù),使得由向量與數(shù)乘法定義可知與平行下面證唯一性:假設(shè)存在兩個(gè)實(shí)數(shù)與反向,取若則與反向,與同向.從而而,故使以上兩式相減,得故下面證唯一性:假設(shè)存在兩個(gè)實(shí)數(shù)與反向,取若則與反向,與同向.定理1.

設(shè)

a

為非零向量,則(為唯一實(shí)數(shù))a∥b..OiPxx點(diǎn)P實(shí)數(shù)x軸上點(diǎn)P的坐標(biāo)為x的充分必要條件是

直線上點(diǎn)的坐標(biāo)平面上點(diǎn)的坐標(biāo)OQpMxyij點(diǎn)M向量

平面的上點(diǎn)M的坐標(biāo)為(x,y)的充分必要條件是

向量定理1.設(shè)a為非零向量,則(為唯一實(shí)數(shù))a∥bⅦⅡⅢⅥⅤⅧⅣ三、空間直角坐標(biāo)系由三條互相垂直的數(shù)軸按右手規(guī)則組成一個(gè)空間直角坐標(biāo)系.

坐標(biāo)原點(diǎn)

坐標(biāo)軸x軸(橫軸)y軸(縱軸)z

軸(豎軸)過空間一定點(diǎn)O,

坐標(biāo)面

卦限(八個(gè))zox面1.空間直角坐標(biāo)系的基本概念ⅠⅦⅡⅢⅥⅤⅧⅣ三、空間直角坐標(biāo)系由三條互相垂直的數(shù)軸按右手規(guī)向徑在直角坐標(biāo)系下坐標(biāo)軸上的點(diǎn)P,Q,R;坐標(biāo)面上的點(diǎn)A,B,C點(diǎn)

M特殊點(diǎn)的坐標(biāo):有序數(shù)組稱有序數(shù)組為點(diǎn)M的坐標(biāo),記為

M原點(diǎn)O(0,0,0);向徑在直角坐標(biāo)系下坐標(biāo)軸上的點(diǎn)P,Q,R;坐標(biāo)面上坐標(biāo)軸:坐標(biāo)面:坐標(biāo)軸:坐標(biāo)面:2.向量的坐標(biāo)表示在空間直角坐標(biāo)系下,設(shè)點(diǎn)

M

則沿三個(gè)坐標(biāo)軸方向的分向量.的坐標(biāo)為此式稱為向量

r

的坐標(biāo)分解式

,任意向量r可用向徑OM表示.2.向量的坐標(biāo)表示在空間直角坐標(biāo)系下,設(shè)點(diǎn)M則沿三個(gè)坐四、利用坐標(biāo)作向量的線性運(yùn)算設(shè)則平行向量對(duì)應(yīng)坐標(biāo)成比例:四、利用坐標(biāo)作向量的線性運(yùn)算設(shè)則平行向量對(duì)應(yīng)坐標(biāo)成比例:例2.求解以向量為未知元的線性方程組解:

①②2×①-3×②,得代入②得例2.求解以向量為未知元的線性方程組解:①②2×①-3×例3.

已知兩點(diǎn)在AB直線上求一點(diǎn)M,使解:

設(shè)M

的坐標(biāo)為如圖所示及實(shí)數(shù)得即故例3.已知兩點(diǎn)在AB直線上求一點(diǎn)M,使解:設(shè)M說(shuō)明:

由得定比分點(diǎn)公式:點(diǎn)

M為AB

的中點(diǎn),于是得中點(diǎn)公式:說(shuō)明:由得定比分點(diǎn)公式:點(diǎn)M為AB的中點(diǎn),于是得五、向量的模、方向角、投影

1.向量的模與兩點(diǎn)間的距離公式則有由勾股定理得因得兩點(diǎn)間的距離公式:對(duì)兩點(diǎn)與五、向量的模、方向角、投影1.向量的模與兩點(diǎn)間的距離公式例4.

求證以證:即為等腰直角三角形.的三角形是等腰直角三角形.為頂點(diǎn)例4.求證以證:即為等腰直角三角形.的三角形是等腰直角三例5.

在z

軸上求與兩點(diǎn)等距解:

設(shè)該點(diǎn)為解得故所求點(diǎn)為及思考:(1)如何求在

xoy

面上與A,B

等距離之點(diǎn)的軌跡方程?(2)如何求在空間與A,B

等距離之點(diǎn)的軌跡方程?離的點(diǎn).例5.在z軸上求與兩點(diǎn)等距解:設(shè)該點(diǎn)為解得故所求點(diǎn)為提示:(1)設(shè)動(dòng)點(diǎn)為利用得(2)設(shè)動(dòng)點(diǎn)為利用得且例6.

已知兩點(diǎn)和解:求提示:(1)設(shè)動(dòng)點(diǎn)為利用得(2)設(shè)動(dòng)點(diǎn)為利用得且例6.2.方向角與方向余弦設(shè)有兩非零向量任取空間一點(diǎn)O,稱=∠AOB(0≤≤)

為向量

的夾角.

類似可定義向量與軸,

軸與軸的夾角.與三坐標(biāo)軸的夾角

,,為其方向角.方向角的余弦稱為其方向余弦.

記作2.方向角與方向余弦設(shè)有兩非零向量任取空間一點(diǎn)O,稱方向余弦的性質(zhì):方向余弦的性質(zhì):例7.

已知兩點(diǎn)和的模、方向余弦和方向角.解:計(jì)算向量例7.已知兩點(diǎn)和的模、方向余弦和方向角.解:計(jì)算向量例8.

設(shè)點(diǎn)A

位于第一卦限,解:

已知角依次為求點(diǎn)A

的坐標(biāo).則因點(diǎn)A

在第一卦限,故于是故點(diǎn)A

的坐標(biāo)為向徑OA

與x

軸,y軸的夾例8.設(shè)點(diǎn)A位于第一卦限,解:已知角依次為求點(diǎn)A3.向量的投影的概念空間一點(diǎn)在軸上的投影3.向量的投影的概念空間一點(diǎn)在軸上的投影過點(diǎn)

作一平面與軸垂直,該平面與軸交于一點(diǎn),則稱為向量在

軸上的分向量,設(shè)

則稱數(shù)為在軸上的投影,記作

或向量在軸上的投影:過點(diǎn)作一平面與軸垂直,該平面與軸在三條坐標(biāo)軸上的投影,即從而或向量的投影具有與坐標(biāo)相同的性質(zhì)性質(zhì)1(是與軸的夾角)性質(zhì)2性質(zhì)3在三條坐標(biāo)軸上的投影,即從而或向量的投影具有與坐標(biāo)相同的性質(zhì)

作業(yè):p12-13習(xí)題8-1

1,3,4,5,13,14,15作業(yè):p12-13習(xí)題8-1第八章空間解析幾何與向量代數(shù)第一節(jié)向量及其線性運(yùn)算第二節(jié)數(shù)量積向量積*混合積第三節(jié)曲面及其方程第四節(jié)空間曲線及其方程第五節(jié)平面及其方程第六節(jié)空間直線及其方程第八章空間解析幾何與向量代數(shù)第一節(jié)向量及其線性運(yùn)算第一、向量概念二、向量的線性運(yùn)算三、空間直角坐標(biāo)系四、利用坐標(biāo)作向量的線性運(yùn)算五、向量的模、方向角、投影§8.1向量及其運(yùn)算一、向量概念二、向量的線性運(yùn)算三、空間直角坐表示法:向量的模:向量的大小,一、向量的概念向量:(又稱矢量).既有大小,又有方向的量稱為向量向徑(矢徑):自由向量:與起點(diǎn)無(wú)關(guān)的向量.起點(diǎn)為原點(diǎn)的向量.單位向量:模為1的向量,零向量:模為0的向量,有向線段

表示法:向量的模:向量的大小,一、向量的概念向量:(又稱矢規(guī)定:零向量與任何向量平行

;若向量a與b大小相等,方向相同,則稱a與b相等,記作a=b;若向量a與b方向相同或相反,則稱a與b平行,

a∥b;與a

的模相同,但方向相反的向量稱為a

的負(fù)向量,記作因平行向量可平移到同一直線上,故兩向量平行又稱兩向量共線

.若k(≥3)個(gè)向量經(jīng)平移可移到同一平面上,則稱此k個(gè)向量共面

.記作-a;規(guī)定:零向量與任何向量平行;若向量a與b大小相等,二、向量的線性運(yùn)算1.向量的加法三角形法則:平行四邊形法則:運(yùn)算規(guī)律:交換律結(jié)合律三角形法則可推廣到多個(gè)向量相加.二、向量的線性運(yùn)算1.向量的加法三角形法則:平行四邊形法則高等數(shù)學(xué)第八章空間解析幾何課件2.向量的減法三角不等式2.向量的減法三角不等式3.向量與數(shù)的乘法是一個(gè)數(shù),與a

的乘積是一個(gè)新向量,記作特別的:3.向量與數(shù)的乘法是一個(gè)數(shù),與a的乘積是一個(gè)結(jié)合律運(yùn)算律:分配律因此結(jié)合律運(yùn)算律:分配律因此定理1.

設(shè)

a

為非零向量,則(為唯一實(shí)數(shù))a∥b..OiPxx點(diǎn)P實(shí)數(shù)x軸上點(diǎn)P的坐標(biāo)為x的充分必要條件是

直線上點(diǎn)的坐標(biāo)平面上點(diǎn)的坐標(biāo)OQpMxyij點(diǎn)M向量

平面的上點(diǎn)M的坐標(biāo)為(x,y)的充分必要條件是

向量定理1.設(shè)a為非零向量,則(為唯一實(shí)數(shù))a∥b證明:

假設(shè)存在唯一的實(shí)數(shù),使得由向量與數(shù)乘法定義可知與平行.與平行假設(shè)與同向,取若則與同向,與同向.從而而,故證明:假設(shè)存在唯一的實(shí)數(shù),使得由向量與數(shù)乘法定義可知與平行下面證唯一性:假設(shè)存在兩個(gè)實(shí)數(shù)與反向,取若則與反向,與同向.從而而,故使以上兩式相減,得故下面證唯一性:假設(shè)存在兩個(gè)實(shí)數(shù)與反向,取若則與反向,與同向.定理1.

設(shè)

a

為非零向量,則(為唯一實(shí)數(shù))a∥b..OiPxx點(diǎn)P實(shí)數(shù)x軸上點(diǎn)P的坐標(biāo)為x的充分必要條件是

直線上點(diǎn)的坐標(biāo)平面上點(diǎn)的坐標(biāo)OQpMxyij點(diǎn)M向量

平面的上點(diǎn)M的坐標(biāo)為(x,y)的充分必要條件是

向量定理1.設(shè)a為非零向量,則(為唯一實(shí)數(shù))a∥bⅦⅡⅢⅥⅤⅧⅣ三、空間直角坐標(biāo)系由三條互相垂直的數(shù)軸按右手規(guī)則組成一個(gè)空間直角坐標(biāo)系.

坐標(biāo)原點(diǎn)

坐標(biāo)軸x軸(橫軸)y軸(縱軸)z

軸(豎軸)過空間一定點(diǎn)O,

坐標(biāo)面

卦限(八個(gè))zox面1.空間直角坐標(biāo)系的基本概念ⅠⅦⅡⅢⅥⅤⅧⅣ三、空間直角坐標(biāo)系由三條互相垂直的數(shù)軸按右手規(guī)向徑在直角坐標(biāo)系下坐標(biāo)軸上的點(diǎn)P,Q,R;坐標(biāo)面上的點(diǎn)A,B,C點(diǎn)

M特殊點(diǎn)的坐標(biāo):有序數(shù)組稱有序數(shù)組為點(diǎn)M的坐標(biāo),記為

M原點(diǎn)O(0,0,0);向徑在直角坐標(biāo)系下坐標(biāo)軸上的點(diǎn)P,Q,R;坐標(biāo)面上坐標(biāo)軸:坐標(biāo)面:坐標(biāo)軸:坐標(biāo)面:2.向量的坐標(biāo)表示在空間直角坐標(biāo)系下,設(shè)點(diǎn)

M

則沿三個(gè)坐標(biāo)軸方向的分向量.的坐標(biāo)為此式稱為向量

r

的坐標(biāo)分解式

,任意向量r可用向徑OM表示.2.向量的坐標(biāo)表示在空間直角坐標(biāo)系下,設(shè)點(diǎn)M則沿三個(gè)坐四、利用坐標(biāo)作向量的線性運(yùn)算設(shè)則平行向量對(duì)應(yīng)坐標(biāo)成比例:四、利用坐標(biāo)作向量的線性運(yùn)算設(shè)則平行向量對(duì)應(yīng)坐標(biāo)成比例:例2.求解以向量為未知元的線性方程組解:

①②2×①-3×②,得代入②得例2.求解以向量為未知元的線性方程組解:①②2×①-3×例3.

已知兩點(diǎn)在AB直線上求一點(diǎn)M,使解:

設(shè)M

的坐標(biāo)為如圖所示及實(shí)數(shù)得即故例3.已知兩點(diǎn)在AB直線上求一點(diǎn)M,使解:設(shè)M說(shuō)明:

由得定比分點(diǎn)公式:點(diǎn)

M為AB

的中點(diǎn),于是得中點(diǎn)公式:說(shuō)明:由得定比分點(diǎn)公式:點(diǎn)M為AB的中點(diǎn),于是得五、向量的模、方向角、投影

1.向量的模與兩點(diǎn)間的距離公式則有由勾股定理得因得兩點(diǎn)間的距離公式:對(duì)兩點(diǎn)與五、向量的模、方向角、投影1.向量的模與兩點(diǎn)間的距離公式例4.

求證以證:即為等腰直角三角形.的三角形是等腰直角三角形.為頂點(diǎn)例4.求證以證:即為等腰直角三角形.的三角形是等腰直角三例5.

在z

軸上求與兩點(diǎn)等距解:

設(shè)該點(diǎn)為解得故所求點(diǎn)為及思考:(1)如何求在

xoy

面上與A,B

等距離之點(diǎn)的軌跡方程?(2)如何求在空間與A,B

等距離之點(diǎn)的軌跡方程?離的點(diǎn).例5.在z軸上求與兩點(diǎn)等距解:設(shè)該點(diǎn)為解得故所求點(diǎn)為提示:(1)設(shè)動(dòng)點(diǎn)為利用得(2)設(shè)動(dòng)點(diǎn)為利用得且例6.

已知兩點(diǎn)和解:求提示:(1)設(shè)動(dòng)點(diǎn)為利用得(2)設(shè)動(dòng)點(diǎn)為利用得且例6.2.方向角與方向余弦設(shè)有兩非零向量任取空間一點(diǎn)O,稱=∠AOB(0≤≤)

為向量

的夾角.

類似可定義向量與軸,

軸與軸的夾角

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論