2023屆江西省上饒縣七中九年級數(shù)學(xué)上冊期末質(zhì)量檢測試題含解析_第1頁
2023屆江西省上饒縣七中九年級數(shù)學(xué)上冊期末質(zhì)量檢測試題含解析_第2頁
2023屆江西省上饒縣七中九年級數(shù)學(xué)上冊期末質(zhì)量檢測試題含解析_第3頁
2023屆江西省上饒縣七中九年級數(shù)學(xué)上冊期末質(zhì)量檢測試題含解析_第4頁
2023屆江西省上饒縣七中九年級數(shù)學(xué)上冊期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.如圖2,四邊形ABCD的對角線AC、BD互相垂直,則下列條件能判定四邊形ABCD為菱形的是()A.BA=BC B.AC、BD互相平分 C.AC=BD D.AB∥CD2.下列說法中不正確的是()A.四邊相等的四邊形是菱形 B.對角線垂直的平行四邊形是菱形C.菱形的對角線互相垂直且相等 D.菱形的鄰邊相等3.如圖,⊙是的外接圓,,則的度數(shù)為()A.60° B.65° C.70° D.75°4.已知是方程的一個根,則方程的另一個根為()A.-2 B.2 C.-3 D.35.如圖是小玲設(shè)計用手電來測家附近“新華大廈”高度的示意圖.點處放一水平的平面鏡,光線從點出發(fā)經(jīng)平面鏡反射后剛好射到大廈的頂端處,已知,且測得米,米,米,那么該大廈的高度約為()A.米 B.米 C.米 D.米6.在△ABC中,∠C=90°,∠B=30°,則cosA的值是()A. B. C. D.17.點A(-2,1)關(guān)于原點對稱的點A'的坐標是()A.(2,1) B.(-2,-1) C.(-1,2) D.(2,-1)8.如圖,將繞點旋轉(zhuǎn)得到,設(shè)點的坐標為,則點的坐標為()A. B.C. D.9.已知二次函數(shù)y=a(x+1)2-b(a≠0)有最小值,則a,b的大小關(guān)系為()A.a(chǎn)>b B.a(chǎn)<bC.a(chǎn)=b D.不能確定10.如圖1是一只葡萄酒杯,酒杯的上半部分是以拋物線為模型設(shè)計而成,且成軸對稱圖形.從正面看葡萄酒杯的上半部分是一條拋物線,若,,以頂點為原點建立如圖2所示的平面直角坐標系,則拋物線的表達式為()A. B. C. D.11.下列圖形中,可以看作是中心對稱圖形的是()A. B. C. D.12.二次函數(shù)y=ax2+bx+c的圖象如圖所示,在ab、ac、b2﹣4ac,2a+b,a+b+c,這五個代數(shù)式中,其值一定是正數(shù)的有()A.1個 B.2個 C.3個 D.4個二、填空題(每題4分,共24分)13.如圖,點A,B,C在⊙O上,CO的延長線交AB于點D,∠A=50°,∠B=30°,則∠ADC的度數(shù)為_____.14.如圖,以矩形ABCD的頂點A為圓心,線段AD長為半徑畫弧,交AB邊于F點;再以頂點C為圓心,線段CD長為半徑畫弧,交AB邊于點E,若AD=,CD=2,則DE、DF和EF圍成的陰影部分面積是_____.15.如圖,矩形ABCD中,AB=1,AD=.以A為圓心,AD的長為半徑做弧交BC邊于點E,則圖中的弧長是_______.16.如圖,將△ABC繞點A逆時針旋轉(zhuǎn)的到△ADE,點C和點E是對應(yīng)點,若∠CAE=90°,AB=1,則BD=_________.17.如圖,,,與交于點,則是相似三角形共有__________對.18.已知二次函數(shù)y=3x2+2x,當(dāng)﹣1≤x≤0時,函數(shù)值y的取值范圍是_____.三、解答題(共78分)19.(8分)如圖,在矩形中,,為邊上一點,把沿直線折疊,頂點折疊到,連接與交于點,連接與交于點,若.(1)求證:;(2)當(dāng)時,,求的長;(3)連接,直接寫出四邊形的形狀:.當(dāng)時,并求的值.20.(8分)如圖,一位測量人員,要測量池塘的寬度的長,他過A、B兩點畫兩條相交于點的射線,在射線上取兩點D、E,使,若測得DE=37.2米,他能求出A、B之間的距離嗎?若能,請你幫他算出來;若不能,請你幫他設(shè)計一個可行方案.21.(8分)如圖①,在直角坐標系中,點A的坐標為(1,0),以O(shè)A為邊在第一象限內(nèi)作正方形OABC,點D是x軸正半軸上一動點(OD>1),連接BD,以BD為邊在第一象限內(nèi)作正方形DBFE,設(shè)M為正方形DBFE的中心,直線MA交y軸于點N.如果定義:只有一組對角是直角的四邊形叫做損矩形.(1)試找出圖1中的一個損矩形;(2)試說明(1)中找出的損矩形的四個頂點一定在同一個圓上;(3)隨著點D位置的變化,點N的位置是否會發(fā)生變化?若沒有發(fā)生變化,求出點N的坐標;若發(fā)生變化,請說明理由;(4)在圖②中,過點M作MG⊥y軸于點G,連接DN,若四邊形DMGN為損矩形,求D點坐標.22.(10分)如圖所示,AD,BE是鈍角△ABC的邊BC,AC上的高,求證:.23.(10分)某鋼鐵廠計劃今年第一季度一月份的總產(chǎn)量為500t,三月份的總產(chǎn)量為720t,若平均每月的增長率相同.(1)第一季度平均每月的增長率;(2)如果第二季度平均每月的增長率保持與第一季度平均每月的增長率相同,請你估計該廠今年5月份總產(chǎn)量能否突破1000t?24.(10分)如圖,ABCD是邊長為1的正方形,在它的左側(cè)補一個矩形ABFE,使得新矩形CEFD與矩形ABEF相似,求BE的長.25.(12分)用列代數(shù)式或列方程(組)的方法,解決網(wǎng)絡(luò)上流行的一個問題:法國新總統(tǒng)比法國第一夫人小24歲,美國新總統(tǒng)比美國第一夫人大24歲,法國新總統(tǒng)比美國新總統(tǒng)小32歲.求:美國第一夫人比法國第一夫人小多少歲?26.如圖1是實驗室中的一種擺動裝置,在地面上,支架是底邊為的等腰直角三角形,,擺動臂可繞點旋轉(zhuǎn),.(1)在旋轉(zhuǎn)過程中①當(dāng)、、三點在同一直線上時,求的長,②當(dāng)、、三點為同一直角三角形的頂點時,求的長.(2)若擺動臂順時針旋轉(zhuǎn),點的位置由外的點轉(zhuǎn)到其內(nèi)的點處,如圖2,此時,,求的長.(3)若連接(2)中的,將(2)中的形狀和大小保持不變,把繞點在平面內(nèi)自由旋轉(zhuǎn),分別取、、的中點、、,連接、、、隨著繞點在平面內(nèi)自由旋轉(zhuǎn),的面積是否發(fā)生變化,若不變,請直接寫出的面積;若變化,的面積是否存在最大與最小?若存在,請直接寫出面積的最大值與最小值,(溫馨提示)

參考答案一、選擇題(每題4分,共48分)1、B【詳解】解:對角線互相垂直平分的四邊形為菱形.已知對角線AC、BD互相垂直,則需添加條件:AC、BD互相平分故選:B2、C【分析】根據(jù)菱形的判定與性質(zhì)即可得出結(jié)論.【詳解】解:A.四邊相等的四邊形是菱形;正確;

B.對角線垂直的平行四邊形是菱形;正確;

C.菱形的對角線互相垂直且相等;不正確;

D.菱形的鄰邊相等;正確;

故選C.【點睛】本題考查了菱形的判定與性質(zhì)以及平行四邊形的性質(zhì);熟記菱形的性質(zhì)和判定方法是解題的關(guān)鍵.3、C【分析】連接OB,根據(jù)等腰三角形的性質(zhì)和圓周角定理即可得到結(jié)論.【詳解】連接OB,∵OC=OB,∠BCO=20,∴∠OBC=20,∴∠BOC=180?20?20=140,∴∠A=140×=70,故選:C.【點睛】本題考查了圓周角定理,要知道,同弧所對的圓周角等于它所對圓心角的一半.4、B【分析】根據(jù)一元二次方程根與系數(shù)的關(guān)系求解.【詳解】設(shè)另一根為m,則

1?m=1,解得m=1.

故選B.【點睛】考查了一元二次方程根與系數(shù)的關(guān)系.根與系數(shù)的關(guān)系為:x1+x1=-,x1?x1=.要求熟練運用此公式解題.5、B【分析】根據(jù)光線從點出發(fā)經(jīng)平面鏡反射后剛好射到大廈的頂端處,可知,再由,可得,從而可以得到,即可求出CD的長.【詳解】∵光線從點出發(fā)經(jīng)平面鏡反射后剛好射到大廈的頂端處∴∵∴∴∴∵米,米,米∴∴CD=16(米)【點睛】本題考查的知識點是相似三角形的性質(zhì)與判定,通過判定三角形相似得到對應(yīng)線段成比例,構(gòu)成比例是關(guān)鍵.6、A【分析】根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】解:∵△ABC中,∠C=90°,∠B=30°,∴∠A=90°-30°=60°.cosA=cos60°=.故選:A.【點睛】本題考查了特殊角的三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關(guān)鍵.7、D【解析】根據(jù)兩個點關(guān)于原點對稱時,它們的橫縱坐標符號相反,即可求解.【詳解】解:點A(-2,1)關(guān)于原點對稱的點A'的坐標是(2,-1).

故選:D.【點睛】本題主要考查了關(guān)于原點對稱點的性質(zhì),正確把握橫縱坐標的關(guān)系是解題關(guān)鍵.8、B【分析】由題意可知,點C為線段A的中點,故可根據(jù)中點坐標公式求解.對本題而言,旋轉(zhuǎn)后的縱坐標與旋轉(zhuǎn)前的縱坐標互為相反數(shù),(旋轉(zhuǎn)后的橫坐標+旋轉(zhuǎn)前的橫坐標)÷2=-1,據(jù)此求解即可.【詳解】解:∵繞點旋轉(zhuǎn)得到,點的坐標為,∴旋轉(zhuǎn)后點A的對應(yīng)點的橫坐標為:,縱坐標為-b,所以旋轉(zhuǎn)后點的坐標為:.故選:B.【點睛】本題考查了旋轉(zhuǎn)變換后點的坐標規(guī)律探求,屬于常見題型,掌握求解的方法是解題的關(guān)鍵.9、D【解析】∵二次函數(shù)y=a(x+1)2-b(a≠0)有最小值,∴a>0,∵無論b為何值,此函數(shù)均有最小值,∴a、b大小無法確定.10、A【分析】由題意可知C(0,0),且過點(2,3),設(shè)該拋物線的解析式為y=ax2,將兩點代入即可得出a的值,進一步得出解析式.【詳解】根據(jù)題意,得該拋物線的頂點坐標為C(0,0),經(jīng)過點(2,3).設(shè)該拋物線的解析式為y=ax2.3=a22.a=.該拋物線的解析式為y=x2.故選A.【點睛】本題考查了二次函數(shù)的應(yīng)用,根據(jù)題意得出兩個坐標是解題的關(guān)鍵.11、B【分析】把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,根據(jù)中心對稱圖形的概念求解.【詳解】A、不是中心對稱圖形,故本選項不合題意;

B、是中心對稱圖形,故本選項符合題意;

C、不中心對稱圖形,故本選項不合題意;

D、不中心對稱圖形,故本選項不合題意.

故選:B.【點睛】本題主要考查了中心對稱圖形的概念:關(guān)鍵是找到相關(guān)圖形的對稱中心,旋轉(zhuǎn)180度后與原圖重合.12、B【解析】試題分析:根據(jù)圖象可知:,則;圖象與x軸有兩個不同的交點,則;函數(shù)的對稱軸小于1,即,則;根據(jù)圖象可知:當(dāng)x=1時,,即;故本題選B.二、填空題(每題4分,共24分)13、110°【解析】試題分析:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故答案為110°.考點:圓周角定理.14、2π+2﹣4【分析】如圖,連接EC.首先證明△BEC是等腰直角三角形,根據(jù)S陰=S矩形ABCD-(S矩形ABCD-S扇形ADF)-(S矩形ABCD-S扇形CDE-S△EBC)=S扇形ADF+S扇形CDE+S△EBC-S矩形ABCD計算即可.【詳解】如圖,連接EC.∵四邊形ABCD是矩形,∴AD=BC=2,CD=AB=EC=2,∠B=∠A=∠DCB=90°,∴BE===2,∴BC=BE=2,∴∠BEC=∠BCE=45°,∴∠ECD=45°,∴S陰=S矩形ABCD﹣(S矩形ABCD﹣S扇形ADF)﹣(S矩形ABCD﹣S扇形CDE﹣S△EBC)=S扇形ADF+S扇形CDE+S△EBC﹣S矩形ABCD=+×2×2﹣2×2,=2π+2﹣4.故答案為:2π+2﹣4.【點睛】本題考查扇形的面積公式,矩形的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識,學(xué)會用分割法求陰影部分面積.15、π【分析】根據(jù)題意可得AD=AE=,則可以求出sin∠AEB,可以判斷出可判斷出∠AEB=45°,進一步求解∠DAE=∠AEB=45°,代入弧長得到計算公式可得出弧DE的長度.【詳解】解:∵AD半徑畫弧交BC邊于點E,AD=

∴AD=AE=,

又∵AB=1,

∴∴∠AEB=45°,∵四邊形ABCD是矩形∴AD∥BC∴∠DAE=∠AEB=45°,

故可得弧DC的長度為==π,

故答案為:π.【點睛】此題考查了弧長的計算公式,解答本題的關(guān)鍵是求出∠DAE的度數(shù),要求我們熟練掌握弧長的計算公式及解直角三角形的知識.16、.【解析】∵將△ABC繞點A逆時針旋轉(zhuǎn)的到△ADE,點C和點E是對應(yīng)點,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案為:.17、6【分析】圖中三角形有:△AEG,△ADC,△CFG,△CBA,因為,,所以△AEG∽△ADC∽△CFG∽△CBA,有6中組合,據(jù)此可得出答案.【詳解】圖中三角形有:△AEG,△ADC,△CFG,△CBA,∵,,∴△AEG∽△ADC∽△CFG∽△CBA共有6個組合分別為:△AEG∽△ADC,△AEG∽△CFG,△AEG∽△CBA,△ADC∽△CFG,△ADC∽△CBA,△CFG∽△CBA故答案為6.【點睛】本題考查的是相似三角形的判定,熟練掌握相似三角形的判定方法是解題的關(guān)鍵.18、﹣≤y≤1【分析】利用配方法轉(zhuǎn)化二次函數(shù)求出對稱軸,根據(jù)二次函數(shù)的性質(zhì)即可求解.【詳解】∵y=3x2+2x=3(x+)2﹣,∴函數(shù)的對稱軸為x=﹣,∴當(dāng)﹣1≤x≤0時,函數(shù)有最小值﹣,當(dāng)x=﹣1時,有最大值1,∴y的取值范圍是﹣≤y≤1,故答案為﹣≤y≤1.【點睛】本題考查二次函數(shù)的性質(zhì)、一般式和頂點式之間的轉(zhuǎn)化,解題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì).三、解答題(共78分)19、(1)見解析;(2);(3)菱形,24【分析】(1)由題意可得∠AEB+∠CED=90°,且∠ECD+∠CED=90°,可得∠AEB=∠ECD,且∠A=∠D=90°,則可證△ABE∽△DEC;

(2)設(shè)AE=x,則DE=13-x,由相似三角形的性質(zhì)可得,即:,可求x的值,即可得DE=9,根據(jù)勾股定理可求CE的長;

(3)由折疊的性質(zhì)可得CP=C'P,CQ=C'Q,∠C'PQ=∠CPQ,∠BC'P=∠BCP=90°,由平行線的性質(zhì)可得∠C'PQ=∠CQP=∠CPQ,即可得CQ=CP=C'Q=C'P,則四邊形C'QCP是菱形,通過證△C'EQ∽△EDC,可得,即可求CE?EQ的值.【詳解】證明:(1)∵CE⊥BE,

∴∠BEC=90°,

∴∠AEB+∠CED=90°,

又∵∠ECD+∠CED=90°,

∴∠AEB=∠ECD,

又∵∠A=∠D=90°,

∴△ABE∽△DEC

(2)設(shè)AE=x,則DE=13-x,

由(1)知:△ABE∽△DEC,

∴,即:

∴x2-13x+36=0,

∴x1=4,x2=9,

又∵AE<DE

∴AE=4,DE=9,

在Rt△CDE中,由勾股定理得:

(3)如圖,

∵折疊,

∴CP=C'P,CQ=C'Q,∠C'PQ=∠CPQ,∠BC'P=∠BCP=90°,

∵CE⊥BC',∠BC'P=90°,

∴CE∥C'P,

∴∠C'PQ=∠CQP,

∴∠CQP=∠CPQ,

∴CQ=CP,

∴CQ=CP=C'Q=C'P,

∴四邊形C'QCP是菱形,

故答案為:菱形

∵四邊形C'QCP是菱形,

∴C'Q∥CP,C'Q=CP,∠EQC'=∠ECD

又∵∠C'EQ=∠D=90°

∴△C'EQ∽△EDC

即:CE?EQ=DC?C'Q=6×4=24【點睛】本題是相似形綜合題,考查了矩形的性質(zhì),菱形的判定和性質(zhì),折疊的性質(zhì),相似三角形的判定和性質(zhì),勾股定理等性質(zhì),靈活運用相關(guān)的性質(zhì)定理、綜合運用知識是解題的關(guān)鍵.20、24.8米.【分析】首先判定△DOE∽△BOA,根據(jù)相似三角形的性質(zhì)可得,再代入DE=37.2米計算即可.【詳解】∵,∠DOE=∠BOA,∴△DOE∽△BOA,∴,∴,∴AB=24.8(米).答:A、B之間的距離為24.8米.【點睛】本題考查了相似三角形的應(yīng)用,關(guān)鍵是掌握相似三角形的對應(yīng)邊的比相等.21、(1)詳見解析;(2)詳見解析;(3)N點的坐標為(0,﹣1);(4)D點坐標為(3,0).【解析】試題分析:(1)根據(jù)題中給出的損矩形的定義,從圖找出只有一組對角是直角的四邊形即可;(2)證明四邊形BADM四個頂點到BD的中點距離相等即可;(3)利用同弧所對的圓周角相等可得∠MAD=∠MBD,進而得到OA=ON,即可求得點N的坐標;(4)根據(jù)正方形的性質(zhì)及損矩形含有的直角,利用勾股定理求解.(1)四邊形ABMD為損矩形;(2)取BD中點H,連結(jié)MH,AH∵四邊形OABC,BDEF是正方形∴△ABD,△BDM都是直角三角形∴HA=BDHM=BD∴HA=HB=HM=HD=BD∴損矩形ABMD一定有外接圓(3)∵損矩形ABMD一定有外接圓⊙H∴MAD=MBD∵四邊形BDEF是正方形∴MBD=45°∴MAD=45°∴OAN=45°∵OA=1∴ON=1∴N點的坐標為(0,-1)(4)延長AB交MG于點P,過點M作MQ⊥軸于點Q設(shè)MG=,則四邊形APMQ為正方形∴PM=AQ=-1∴OG=MQ=-1∵△MBP≌△MDQ∴DQ=BP=CG=-2∴MN2ND2MD2∵四邊形DMGN為損矩形∴∴∴=2.5或=1(舍去)∴OD=3∴D點坐標為(3,0).考點:本題考查的是確定圓的條件,正方形的性質(zhì)點評:解答本題的關(guān)鍵是理解損矩形的只有一組對角是直角的性質(zhì),22、見解析.【分析】根據(jù)兩角相等的兩個三角形相似證明△ADC∽△BEC即可.【詳解】證明:∵AD,BE分別是BC,AC上的高∴∠D=∠E=90°又∠ACD=∠BCE(對頂角相等)∴△ADC∽△BEC∴.【點睛】本題考查了相似三角形的判定,熟練掌握形似三角形的判定方法是解答本題的關(guān)鍵.①有兩個對應(yīng)角相等的三角形相;②有兩個對應(yīng)邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應(yīng)邊的比相等,則兩個三角形相似.23、(1)20%(2)能【解析】(1)設(shè)第一季度平均每月的增長率為x,根據(jù)該廠一月份及三月份的總產(chǎn)量,即可得出關(guān)于x的一元二次方程,解之取其正值即可得出結(jié)論;(2)根據(jù)五月份的總產(chǎn)量=三月份的總產(chǎn)量×(1+增長率)2,即可求出今年五月份的總產(chǎn)量,再與1000進行比較即可得出結(jié)論.【詳解】(1)設(shè)第一季度平均每月的增長率為x,根據(jù)題意得:500(1+x)2=720解得:x1=0.2=20%,x2=﹣2.2(舍去).答:第一季度平均每月的增長率為20%.(2)720×(1+20%)2=1036.8(t).∵1036.8>1000,∴該廠今年5月份總產(chǎn)量能突破1000t.【點睛】本題考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是:(1)找準等量關(guān)系,正確列出一元二次方程;(2)根據(jù)數(shù)量關(guān)系,求出今年五月份的總產(chǎn)量.24、【分析】設(shè)BE=x,BC=1,CE=x+1,然后根據(jù)相似多邊形的性質(zhì)列出比例式,計算即可.【詳解】解:設(shè)BE=x,則BC=1,CE=x+1,∵矩形CEFD與矩形ABEF相似,∴或,代入數(shù)據(jù),∴或,解得:,(舍去),或不存在,∴BE的長為/r/

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論