2023屆山東省青島大附屬中學(xué)九年級數(shù)學(xué)上冊期末調(diào)研試題含解析_第1頁
2023屆山東省青島大附屬中學(xué)九年級數(shù)學(xué)上冊期末調(diào)研試題含解析_第2頁
2023屆山東省青島大附屬中學(xué)九年級數(shù)學(xué)上冊期末調(diào)研試題含解析_第3頁
2023屆山東省青島大附屬中學(xué)九年級數(shù)學(xué)上冊期末調(diào)研試題含解析_第4頁
2023屆山東省青島大附屬中學(xué)九年級數(shù)學(xué)上冊期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,四邊形ABCD是矩形,點E在線段CB的延長線上,連接DE交AB于點F,∠AED=2∠CED,點G為DF的中點.若BE=1,AG=3,則AB的長是()A. B.2 C. D.2.下列方程中,沒有實數(shù)根的是()A. B. C. D.3.把函數(shù)y=﹣3x2的圖象向右平移2個單位,所得到的新函數(shù)的表達(dá)式是()A.y=﹣3x2﹣2 B.y=﹣3(x﹣2)2 C.y=﹣3x2+2 D.y=﹣3(x+2)24.在同一坐標(biāo)系內(nèi),一次函數(shù)與二次函數(shù)的圖象可能是A. B. C. D.5.下列說法中正確的有()①位似圖形都相似;②兩個等腰三角形一定相似;③兩個相似多邊形的面積比是,則周長比為;④若一個矩形的四邊形分別比另一個矩形的四邊形長2,那么這兩個矩形一定相似.A.1個 B.2個 C.3個 D.4個6.已知拋物線的解析式為y=(x-2)2+1,則這條拋物線的頂點坐標(biāo)是().A.(﹣2,1)B.(2,1)C.(2,﹣1)D.(1,2)7.一元二次方程的根的情況是()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.只有一個實數(shù)根 D.沒有實數(shù)根8.已知k1<0<k2,則函數(shù)y=k1x和的圖象大致是()A. B. C. D.9.一元二次方程mx2+mx﹣=0有兩個相等實數(shù)根,則m的值為()A.0 B.0或﹣2 C.﹣2 D.210.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B.C. D.11.已知關(guān)于x的一元二次方程有兩個相等的實根,則k的值為()A. B. C.2或3 D.或12.下列事件中,是必然事件的是()A.明天一定有霧霾B.國家隊射擊運動員射擊一次,成績?yōu)?0環(huán)C.13個人中至少有兩個人生肖相同D.購買一張彩票,中獎二、填空題(每題4分,共24分)13.已知,則=__________.14.如圖,已知的半徑為2,內(nèi)接于,,則__________.15.關(guān)于x的方程的兩個根是﹣2和1,則nm的值為_____.16.鉛球行進(jìn)高度y(m)與水平距離x(m)之間的關(guān)系為y=﹣x2+x+,鉛球推出后最大高度是_____m,鉛球落地時的水平距離是______m.17.如圖,在直角坐標(biāo)系中,已知點,,,,對述續(xù)作旋轉(zhuǎn)變換,依次得、、、...,則的直角頂點的坐標(biāo)為________.18.一個不透明的布袋中裝有3個白球和5個紅球,它們除了顏色不同外,其余均相同,從中隨機摸出一個球,摸到紅球的概率是______.三、解答題(共78分)19.(8分)如圖,在⊿OAB中,∠OAB=90°.OA=AB=6.將⊿OAB繞點O逆時針方向旋轉(zhuǎn)90°得到⊿OA1B1(1)線段A1B1的長是∠AOA1的度數(shù)是(2)連結(jié)AA1,求證:四邊形OAA1B1是平行四邊形;(3)求四邊形OAA1B1的面積.20.(8分)如圖所示,直線y=x+2與雙曲線y=相交于點A(2,n),與x軸交于點C.(1)求雙曲線解析式;(2)點P在x軸上,如果△ACP的面積為5,求點P的坐標(biāo).21.(8分)如圖,△ABC內(nèi)接于⊙O,AB=AC,∠BAC=36°,過點A作AD∥BC,與∠ABC的平分線交于點D,BD與AC交于點E,與⊙O交于點F.(1)求∠DAF的度數(shù);(2)求證:AE2=EF?ED;(3)求證:AD是⊙O的切線.22.(10分)如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點C與原點O重合,點B在y軸的正半軸上,點A在函數(shù)y=(k>0,x>0)的圖象上,點D的坐標(biāo)為(4,3).(1)求k的值;(2)若將菱形ABCD沿x軸正方向平移,當(dāng)菱形的頂點D落在函數(shù)y=(k>0,x>0)的圖象上時,求菱形ABCD沿x軸正方向平移的距離.23.(10分)我們可以把一個假分?jǐn)?shù)寫成一個整數(shù)加上一個真分?jǐn)?shù)的形式,如=3+.同樣的,我們也可以把某些分式寫成類似的形式,如=3+.這種方法我們稱為“分離常數(shù)法”.(1)如果=1+,求常數(shù)a的值;(2)利用分離常數(shù)法,解決下面的問題:當(dāng)m取哪些整數(shù)時,分式的值是整數(shù)?(3)我們知道一次函數(shù)y=x-1的圖象可以看成是由正比例函數(shù)y=x的圖象向下平移1個單位長度得到,函數(shù)y=的圖象可以看成是由反比例函數(shù)y=的圖象向左平移1個單位長度得到.那么請你分析說明函數(shù)y=的圖象是由哪個反比例函數(shù)的圖象經(jīng)過怎樣的變換得到?24.(10分)在平面直角坐標(biāo)系中,直線y=x+3與x軸交于點A,與y軸交于點B,拋物線y=a+bx+c(a<0)經(jīng)過點A,B,(1)求a、b滿足的關(guān)系式及c的值,(2)當(dāng)x<0時,若y=a+bx+c(a<0)的函數(shù)值隨x的增大而增大,求a的取值范圍,(3)如圖,當(dāng)a=?1時,在拋物線上是否存在點P,使△PAB的面積為?若存在,請求出符合條件的所有點P的坐標(biāo);若不存在,請說明理由,25.(12分)某中學(xué)為數(shù)學(xué)實驗“先行示范校”,一數(shù)學(xué)活動小組帶上高度為1.5m的測角儀BC,對建筑物AO進(jìn)行測量高度的綜合實踐活動,如圖,在BC處測得直立于地面的AO頂點A的仰角為30°,然后前進(jìn)40m至DE處,測得頂點A的仰角為75°.(1)求∠CAE的度數(shù);(2)求AE的長(結(jié)果保留根號);(3)求建筑物AO的高度(精確到個位,參考數(shù)據(jù):,).26.如圖,四邊形ABCD內(nèi)接于⊙O,AB是直徑,C為的中點,延長AD,BC交于點P,連結(jié)AC.(1)求證:AB=AP;(2)若AB=10,DP=2,①求線段CP的長;②過點D作DE⊥AB于點E,交AC于點F,求△ADF的面積.

參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得AG=DG,進(jìn)而得到得∠ADG=∠DAG,再結(jié)合兩直線平行,內(nèi)錯角相等可得∠ADG=∠CED,再根據(jù)三角形外角定理∠AGE=2∠ADG,從而得到∠AED=∠AGE,再得到AE=AG,然后利用勾股定理列式計算即可得解.【詳解】解:∵四邊形ABCD是矩形,點G是DF的中點,∴AG=DG,∴∠ADG=∠DAG,∵AD∥BC,∴∠ADG=∠CED,∴∠AGE=∠ADG+∠DAG=2∠CED,∵∠AED=2∠CED,∴∠AED=∠AGE,∴AE=AG=3,在Rt△ABE中,,故選:B.【點睛】本題考查了矩形的性質(zhì),等邊對等角的性質(zhì),等角對等邊的性質(zhì),以及勾股定理的應(yīng)用,求出AE=AG是解題的關(guān)鍵.2、D【分析】要判定所給方程根的情況,只要分別求出它們的判別式,然后根據(jù)判別式的正負(fù)情況即可作出判斷.沒有實數(shù)根的一元二次方程就是判別式的值小于0的方程.【詳解】解:A、x2+x=0中,△=b2-4ac=1>0,有實數(shù)根;

B、x2-2=0中,△=b2-4ac=8>0,有實數(shù)根;

C、x2+x-1=0中,△=b2-4ac=5>0,有實數(shù)根;

D、x2-x+1=0中,△=b2-4ac=-3,沒有實數(shù)根.

故選D.【點睛】本題考查一元二次方程根判別式△:即(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.3、B【分析】根據(jù)二次函數(shù)圖象左加右減,上加下減的平移規(guī)律進(jìn)行解答.【詳解】二次函數(shù)y=﹣3x1的圖象向右平移1個單位,得:y=﹣3(x﹣1)1.故選:B.【點睛】本題考查的是函數(shù)圖象的平移,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式.4、C【分析】x=0,求出兩個函數(shù)圖象在y軸上相交于同一點,再根據(jù)拋物線開口方向向上確定出a>0,然后確定出一次函數(shù)圖象經(jīng)過第一三象限,從而得解.【詳解】x=0時,兩個函數(shù)的函數(shù)值y=b,

所以,兩個函數(shù)圖象與y軸相交于同一點,故B、D選項錯誤;

由A、C選項可知,拋物線開口方向向上,

所以,a>0,

所以,一次函數(shù)y=ax+b經(jīng)過第一三象限,

所以,A選項錯誤,C選項正確.

故選C.5、A【分析】根據(jù)位似變換的概念、相似多邊形的判定定理和性質(zhì)定理判斷.【詳解】解:①位似圖形都相似,本選項說法正確;②兩個等腰三角形不一定相似,本選項說法錯誤;③兩個相似多邊形的面積比是2:3,則周長比為,本選項說法錯誤;④若一個矩形的四邊分別比另一個矩形的四邊長2,那么這兩個矩形對應(yīng)邊的比不一定相等,兩個矩形不一定一定相似,本選項說法錯誤;∴正確的只有①;故選:A.【點睛】本題考查的是位似變換、相似多邊形的判定和性質(zhì),掌握位似變換的概念、相似多邊形的判定定理和性質(zhì)定理是解題的關(guān)鍵.6、B【解析】根據(jù)頂點式y(tǒng)=(x-h)2+k的頂點為(h,k),由y=(x-2)2+1為拋物線的頂點式,頂點坐標(biāo)為(2,1).

故選:B.7、D【分析】先計算判別式的值,然后根據(jù)判別式的意義判斷方程根的情況.【詳解】∵△=62-4×(-1)×(-10)=36-40=-4<0,

∴方程沒有實數(shù)根.

故選D.【點睛】此題考查一元二次方程的根的判別式,解題關(guān)鍵在于掌握方程有兩個不相等的實數(shù)根;當(dāng)△=0,方程有兩個相等的實數(shù)根;當(dāng)△<0,方程沒有實數(shù)根.8、D【解析】試題分析::∵k1<0<k2,∴直線過二、四象限,并且經(jīng)過原點;雙曲線位于一、三象限.故選D.考點:1.反比例函數(shù)的圖象;2.正比例函數(shù)的圖象.9、C【解析】由方程有兩個相等的實數(shù)根,得到根的判別式等于0,求出m的值,經(jīng)檢驗即可得到滿足題意m的值.【詳解】∵一元二次方程mx1+mx﹣=0有兩個相等實數(shù)根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,經(jīng)檢驗m=0不合題意,則m=﹣1.故選C.【點睛】此題考查了根的判別式,根的判別式的值大于0,方程有兩個不相等的實數(shù)根;根的判別式的值等于0,方程有兩個相等的實數(shù)根;根的判別式的值小于0,方程沒有實數(shù)根.10、A【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念進(jìn)行判斷即可.【詳解】解:A、是軸對稱圖形,也是中心對稱圖形,故此選項符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;C、不是軸對稱圖形,是中心對稱圖形,故此選項不合題意;D、是軸對稱圖形,不是中心對稱圖形,故此選項不合題意.故選:A.【點睛】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.11、A【分析】根據(jù)方程有兩個相等的實數(shù)根結(jié)合根的判別式即可得出關(guān)于k的方程,解之即可得出結(jié)論.【詳解】∵方程有兩個相等的實根,∴△=k2-4×2×3=k2-24=0,解得:k=.故選A.【點睛】本題考查了根的判別式,熟練掌握“當(dāng)△=0時,方程有兩個相等的兩個實數(shù)根”是解題的關(guān)鍵.12、C【分析】必然事件是一定發(fā)生的事情,據(jù)此判斷即可.【詳解】A.明天有霧霾是隨機事件,不符合題意;B.國家隊射擊運動員射擊一次,成績?yōu)?0環(huán)是隨機事件,不符合題意;C.總共12個生肖,13個人中至少有兩個人生肖相同是必然事件,符合題意;D.購買一張彩票,中獎是隨機事件,不符合題意;故選:C.【點睛】本題考查了必然事件與隨機事件,必然事件是一定發(fā)生的的時間,隨機事件是可能發(fā)生,也可能不發(fā)生的事件,熟記概念是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】根據(jù)比例的性質(zhì),化簡求值即可.【詳解】故答案為:.【點睛】本題主要考察比例的性質(zhì),解題關(guān)鍵是根據(jù)比例的性質(zhì)化簡求值.14、【解析】分析:根據(jù)圓內(nèi)接四邊形對邊互補和同弧所對的圓心角是圓周角的二倍,可以求得∠AOB的度數(shù),然后根據(jù)勾股定理即可求得AB的長.詳解:連接AD、AE、OA、OB,∵⊙O的半徑為2,△ABC內(nèi)接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案為:2.點睛:本題考查三角形的外接圓和外心,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.15、﹣1【分析】由方程的兩根結(jié)合根與系數(shù)的關(guān)系可求出m、n的值,將其代入nm中即可求出結(jié)論.【詳解】解:∵關(guān)于x的方程的兩個根是﹣2和1,∴,∴m=2,n=﹣4,∴.故答案為:﹣1.【點睛】本題主要考查一元二次方程根與系數(shù)的關(guān)系,熟練掌握根與系數(shù)的關(guān)系是解題的關(guān)鍵.16、310【分析】利用配方法將函數(shù)解析式轉(zhuǎn)化為頂點式,利用二次函數(shù)的性質(zhì),可求得鉛球行進(jìn)的最大高度;鉛球推出后落地時,高度y=0,把實際問題可理解為當(dāng)y=0時,求得x的值就是鉛球落地時的水平距離.【詳解】∵y=﹣x2+x+,∴y=﹣(x﹣4)2+3因為﹣<0所以當(dāng)x=4時,y有最大值為3.所以鉛球推出后最大高度是3m.令y=0,即0=﹣(x﹣4)2+3解得x1=10,x2=﹣2(舍去)所以鉛球落地時的水平距離是10m.故答案為3、10.【點睛】此題考查了函數(shù)式中自變量與函數(shù)表達(dá)的實際意義,需要結(jié)合題意,取函數(shù)或自變量的特殊值列方程求解.正確解答本題的關(guān)鍵是掌握二次函數(shù)的性質(zhì).17、(1200,0)【分析】根據(jù)題目提供的信息,可知旋轉(zhuǎn)三次為一個循環(huán),圖中第三次和第四次的直角頂點的坐標(biāo)相同,由①→③時直角頂點的坐標(biāo)可以求出來,從而可以解答本題.【詳解】由題意可得,

△OAB旋轉(zhuǎn)三次和原來的相對位置一樣,點A(-3,0)、B(0,4),

∴OA=3,OB=4,∠BOA=90°,∴,∴旋轉(zhuǎn)到第三次時的直角頂點的坐標(biāo)為:(12,0),

∵301÷3=100…1

∴旋轉(zhuǎn)第301次的直角頂點的坐標(biāo)為:(1200,0),

故答案為:(1200,0).【點睛】本題考查了坐標(biāo)與圖形變化-旋轉(zhuǎn),是對圖形變化規(guī)律,觀察出每三次旋轉(zhuǎn)為一個循環(huán)組依次循環(huán),并且下一組的第一個直角三角形與上一組的最后一個直角三角形的直角頂點重合是解題的關(guān)鍵.18、【分析】根據(jù)概率的求法,找準(zhǔn)兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】根據(jù)題意可得:一個不透明的袋中裝有除顏色外其余均相同的3個白球和5個紅球,共5個,從中隨機摸出一個,則摸到紅球的概率是故答案為:.【點睛】本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.三、解答題(共78分)19、(1)6,90;(2)見解析;(3)1【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)即可直接求解;

(2)根據(jù)旋轉(zhuǎn)的性質(zhì)以及平行線的判定定理證明B1A1∥OA且A1B1=OA即可證明四邊形OAA1B1是平行四邊形;

(3)利用平行四邊形的面積公式求解.【詳解】解:(1)由旋轉(zhuǎn)的性質(zhì)可知:A1B1=AB=6,∠AOA1=90°.

故答案是:6,90°;

(2)∵A1B1=AB=6,OA1=OA=6,∠OA1B1=∠OAB=90°,∠AOA1=90°,

∴∠OA1B1=∠AOA1,A1B1=OA,

∴B1A1∥OA,

∴四邊形OAA1B1是平行四邊形;

(3)S=OA?A1O=6×6=1.

即四邊形OAA1B1的面積是1.故答案為(1)6,90;(2)見解析;(3)1.【點睛】本題考查旋轉(zhuǎn)的性質(zhì)以及平行四邊形的判定和面積公式,證明B1A1∥OA是關(guān)鍵.20、(1);(2)(,0)或【分析】(1)把A點坐標(biāo)代入直線解析式可求得n的值,則可求得A點坐標(biāo),再把A點坐標(biāo)代入雙曲線解析式可求得k的值,可求得雙曲線解析式;(2)設(shè)P(x,0),則可表示出PC的長,進(jìn)一步表示出△ACP的面積,可得到關(guān)于x的方程,解方程可求得P點的坐標(biāo).【詳解】解:(1)把A(2,n)代入直線解析式得:n=3,∴A(2,3),把A坐標(biāo)代入y=,得k=6,則雙曲線解析式為y=.(2)對于直線y=x+2,令y=0,得到x=-4,即C(-4,0).設(shè)P(x,0),可得PC=|x+4|.∵△ACP面積為5,∴|x+4|?3=5,即|x+4|=2,解得:x=-或x=-,則P坐標(biāo)為或.21、(1)∠DAF=36°;(2)證明見解析;(3)證明見解析.【解析】(1)求出∠ABC、∠ABD、∠CBD的度數(shù),求出∠D度數(shù),根據(jù)三角形內(nèi)角和定理求出∠BAF和∠BAD度數(shù),即可求出答案;(2)求出△AEF∽△DEA,根據(jù)相似三角形的性質(zhì)得出即可;(3)連接AO,求出∠OAD=90°即可.【詳解】(1)∵AD∥BC,∴∠D=∠CBD,∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=×(180°﹣∠BAC)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC=×72°=36°,∴∠D=∠CBD=36°,∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB﹣∠FAB=108°﹣72°=36°;(2)證明:∵∠CBD=36°,∠FAC=∠CBD,∴∠FAC=36°=∠D,∵∠AED=∠AEF,∴△AEF∽△DEA,∴,∴AE2=EF×ED;(3)證明:連接OA、OF,∵∠ABF=36°,∴∠AOF=2∠ABF=72°,∵OA=OF,∴∠OAF=∠OFA=×(180°﹣∠AOF)=54°,由(1)知∠DAF=36°,∴∠DAO=36°+54°=90°,即OA⊥AD,∵OA為半徑,∴AD是⊙O的切線.【點睛】本題考查了切線的判定,圓周角定理,三角形內(nèi)角和定理,等腰三角形的性質(zhì)等知識點,能綜合運用定理進(jìn)行推理是解此題的關(guān)鍵.22、(1)k=32;(2)菱形ABCD平移的距離為.【分析】(1)由題意可得OD=5,從而可得點A的坐標(biāo),從而可得k的值;(2)將菱形ABCD沿x軸正方向平移,使得點D落在函數(shù)(x>0)的圖象D’點處,由題意可知D’的縱坐標(biāo)為3,從而可得橫坐標(biāo),從而可知平移的距離.【詳解】(1)過點D作x軸的垂線,垂足為F,∵點D的坐標(biāo)為(4,3),∴OF=4,DF=3,∴OD=5,∴AD=5,∴點A坐標(biāo)為(4,8),∴k=xy=4×8=32,∴k=32;(2)將菱形ABCD沿x軸正方向平移,使得點D落在函數(shù)(x>0)的圖象D’點處,過點D’做x軸的垂線,垂足為F’.∵DF=3,∴D’F’=3,∴點D’的縱坐標(biāo)為3,∵點D’在的圖象上,∴3=,解得=,即∴菱形ABCD平移的距離為.考點:1.勾股定理;2.反比例函數(shù);3.菱形的性質(zhì);4.平移.23、(1)a=-4;(2)m=4或m=-2或m=2或m=0;(3)y=.【解析】(1)依據(jù)定義進(jìn)行判斷即可;(2)首先將原式變形為-3-,然后依據(jù)m-1能夠被3整數(shù)列方程求解即可;(3)先將函數(shù)y=化為y=+3,再結(jié)合平移的性質(zhì)即可得出結(jié)論.【詳解】(1)∵=1+,∴a=-4.(2)=-3-,∴當(dāng)m-1=3或-3或1或-1時,分式的值為整數(shù),解得m=4或m=-2或m=2或m=0.(3)y==3+,∴將y=的圖象向右移動2個單位長度得到y(tǒng)=的圖象,再向上移動3個單位長度得到y(tǒng)-3=,即y=.【點睛】本題考查了分式的基本性質(zhì),熟練掌握分式的基本性質(zhì)和找出圖象平移的性質(zhì)是解題的關(guān)鍵.24、(1)b=3a+1;c=3;(2);(3)點P的坐標(biāo)為:(,)或(,)或(,)或(,).【分析】(1)求出點A、B的坐標(biāo),即可求解;(2)當(dāng)x<0時,若y=ax2+bx+c(a<0)的函數(shù)值隨x的增大而增大,則函數(shù)對稱軸,而b=3a+1,即:,即可求解;(3)過點P作直線l∥AB,作PQ∥y軸交BA于點Q,作PH⊥AB于點H,由S△PAB=,則=1,即可求解.【詳解】解:(1)y=x+3,令x=0,則y=3,令y=0,則x=,故點A、B的坐標(biāo)分別為(-3,0)、(0,3),則c=3,則函數(shù)表達(dá)式為:y=ax2+bx+3,將點A坐標(biāo)代入上式并整理得:b=3a+1;(2)當(dāng)x<0時,若y=ax2+bx+c(a<0)的函數(shù)值隨x的增大而增大,則函數(shù)對稱軸,∵,∴,解得:,∴a的取值范圍為:;(3)當(dāng)a=時,b=3a+1=二次函數(shù)表達(dá)式為:,過點P作直線l∥AB,作PQ∥y軸交BA于點Q,作PH⊥AB于點H,∵OA=OB,∴∠BAO=∠PQH=45°,S△PAB=×AB×PH=××PQ×=,則PQ==1,在直線AB下方作直線m,使直線m和l與直線AB等距離,則直線m與拋物線兩個交點,分別與點AB組成的三角形的面積也為,∴,設(shè)點P(x,-x2-2x+3),則點Q(x,x+3),即:-x2-2x+3-x-3=±1,解得:或;∴點P的坐標(biāo)為:(,)或(,)或(,)或(,).【點睛】主要考查了二次函數(shù)的解析式的求法和與幾何圖形結(jié)合的綜合能力的培養(yǎng).要會利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來,利用點的坐標(biāo)的意義表示線段的長度,從而求出線段之間的關(guān)系.25、(1)45°;(2);(3)29.【分析】(1)先根據(jù)測得頂點A的仰角為75°,求出∠AEC的度數(shù)進(jìn)而求∠CAE的度數(shù);(2)延長CE交AO于點G,過點E作EF⊥AC垂足為F.解直角三角形即可得到結(jié)論;(3)根據(jù)題干條件直接解直角三角形即可得到結(jié)論.【詳解】解:(1)由測

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論