版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,一個梯子AB長2.5米,頂端A靠在墻AC上,這時梯子下端B與墻角C距離為1.5米,梯子滑動后停在DE的位置上,測得BD長為0.9米,則梯子頂端A下落了()A.0.9米 B.1.3米 C.1.5米 D.2米2.如圖,A,C,E,G四點在同一直線上,分別以線段AC,CE,EG為邊在AG同側作等邊三角形△ABC,△CDE,△EFG,連接AF,分別交BC,DC,DE于點H,I,J,若AC=1,CE=2,EG=3,則△DIJ的面積是()A. B. C. D.3.解分式方程,分以下四步,其中,錯誤的一步是()A.方程兩邊分式的最簡公分母是(x﹣1)(x+1)B.方程兩邊都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解這個整式方程,得x=1D.原方程的解為x=14.如圖所示,是用直尺和圓規(guī)作一個角等于已知角的示意圖,則說明∠A′O′B′=∠AOB的依據是()A.SAS B.SSS C.AAS D.ASA5.如圖,△ABC是⊙O的內接三角形,AD⊥BC于D點,且AC=5,CD=3,BD=4,則⊙O的直徑等于()A.52 B.32 C.56.如圖,已知AB∥DE,∠ABC=80°,∠CDE=140°,則∠C=()A.50° B.40° C.30° D.20°7.在娛樂節(jié)目“墻來了!”中,參賽選手背靠水池,迎面沖來一堵泡沫墻,墻上有人物造型的空洞.選手需要按墻上的造型擺出相同的姿勢,才能穿墻而過,否則會被墻推入水池.類似地,有一塊幾何體恰好能以右圖中兩個不同形狀的“姿勢”分別穿過這兩個空洞,則該幾何體為()A. B. C. D.8.下列各式:①a0=1②a2·a3=a5③2–2=–④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正確的是()A.①②③ B.①③⑤ C.②③④ D.②④⑤9.計算x﹣2y﹣(2x+y)的結果為()A.3x﹣y B.3x﹣3y C.﹣x﹣3y D.﹣x﹣y10.如圖,一段拋物線:y=﹣x(x﹣5)(0≤x≤5),記為C1,它與x軸交于點O,A1;將C1繞點A1旋轉180°得C2,交x軸于點A2;將C2繞點A2旋轉180°得C3,交x軸于點A3;…如此進行下去,得到一“波浪線”,若點P(2018,m)在此“波浪線”上,則m的值為(
)A.4 B.﹣4 C.﹣6 D.6二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,△ABC中,D、E分別在AB、AC上,DE∥BC,AD:AB=1:3,則△ADE與△ABC的面積之比為______.12.在平面直角坐標系中,如果點P坐標為(m,n),向量可以用點P的坐標表示為=(m,n),已知:=(x1,y1),=(x2,y2),如果x1?x2+y1?y2=0,那么與互相垂直,下列四組向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(﹣1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是______(填上所有正確答案的符號).13.計算:×(﹣2)=___________.14.函數的自變量x的取值范圍是_____.15.在某一時刻,測得一根長為1.5m的標桿的影長為3m,同時測得一根旗桿的影長為26m,那么這根旗桿的高度為_____m.16.計算:7+(-5)=______.三、解答題(共8題,共72分)17.(8分)如圖,已知拋物線y=ax2+2x+8與x軸交于A,B兩點,與y軸交于點C,且B(4,0).(1)求拋物線的解析式及其頂點D的坐標;(2)如果點P(p,0)是x軸上的一個動點,則當|PC﹣PD|取得最大值時,求p的值;(3)能否在拋物線第一象限的圖象上找到一點Q,使△QBC的面積最大,若能,請求出點Q的坐標;若不能,請說明理由.18.(8分)列方程解應用題八年級學生去距學校10km的博物館參觀,一部分學生騎自行車先走,過了20min后,其余學生乘汽車出發(fā),結果他們同時到達.已知汽車的速度是騎車學生速度的2倍,求騎車學生的速度.19.(8分)計算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣2|20.(8分)如圖,可以自由轉動的轉盤被它的兩條直徑分成了四個分別標有數字的扇形區(qū)域,其中標有數字“1”的扇形圓心角為120°.轉動轉盤,待轉盤自動停止后,指針指向一個扇形的內部,則該扇形內的數字即為轉出的數字,此時,稱為轉動轉盤一次(若指針指向兩個扇形的交線,則不計轉動的次數,重新轉動轉盤,直到指針指向一個扇形的內部為止)(1)轉動轉盤一次,求轉出的數字是-2的概率;(2)轉動轉盤兩次,用樹狀圖或列表法求這兩次分別轉出的數字之積為正數的概率.21.(8分)解分式方程:=22.(10分)某公司10名銷售員,去年完成的銷售額情況如表:銷售額(單位:萬元)34567810銷售員人數(單位:人)1321111(1)求銷售額的平均數、眾數、中位數;(2)今年公司為了調動員工積極性,提高年銷售額,準備采取超額有獎的措施,請根據(1)的結果,通過比較,合理確定今年每個銷售員統(tǒng)一的銷售額標準是多少萬元?23.(12分)解不等式組:并寫出它的所有整數解.24.為鼓勵大學畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關政策:由政府協(xié)調,本市企業(yè)按成本價提供產品給大學畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關政策投資銷售本市生產的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件元,出廠價為每件元,每月銷售量(件)與銷售單價(元)之間的關系近似滿足一次函數:.李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為元,那么政府這個月為他承擔的總差價為多少元?設李明獲得的利潤為(元),當銷售單價定為多少元時,每月可獲得最大利潤?物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于元.如果李明想要每月獲得的利潤不低于元,那么政府為他承擔的總差價最少為多少元?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題分析:要求下滑的距離,顯然需要分別放到兩個直角三角形中,運用勾股定理求得AC和CE的長即可.解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,∴AC=2,∵BD=0.9,∴CD=2.1.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.2.故選B.考點:勾股定理的應用.2、A【解析】
根據等邊三角形的性質得到FG=EG=3,∠AGF=∠FEG=60°,根據三角形的內角和得到∠AFG=90°,根據相似三角形的性質得到==,==,根據三角形的面積公式即可得到結論.【詳解】∵AC=1,CE=2,EG=3,∴AG=6,∵△EFG是等邊三角形,∴FG=EG=3,∠AGF=∠FEG=60°,∵AE=EF=3,∴∠FAG=∠AFE=30°,∴∠AFG=90°,∵△CDE是等邊三角形,∴∠DEC=60°,∴∠AJE=90°,JE∥FG,∴△AJE∽△AFG,∴==,∴EJ=,∵∠BCA=∠DCE=∠FEG=60°,∴∠BCD=∠DEF=60°,∴∠ACI=∠AEF=120°,∵∠IAC=∠FAE,∴△ACI∽△AEF,∴==,∴CI=1,DI=1,DJ=,∴IJ=,∴=?DI?IJ=××.故選:A.【點睛】本題考查了等邊三角形的性質,相似三角形的判定和性質,三角形的面積的計算,熟練掌握相似三角形的性質和判定是解題的關鍵.3、D【解析】
先去分母解方程,再檢驗即可得出.【詳解】方程無解,雖然化簡求得,但是將代入原方程中,可發(fā)現和的分母都為零,即無意義,所以,即方程無解【點睛】本題考查了分式方程的求解與檢驗,在分式方程中,一般求得的x值都需要進行檢驗4、B【解析】
由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根據SSS可得到三角形全等.【詳解】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據SSS可判定△COD≌△C'O'D',故選:B.【點睛】本題主要考查了全等三角形的判定,關鍵是掌握全等三角形的判定定理.5、A【解析】
連接AO并延長到E,連接BE.設AE=2R,則∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=AC2-DC2=52-【詳解】解:如圖,連接AO并延長到E,連接BE.設AE=2R,則∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D點,AC=5,DC=3,∴∠ADC=90°,∴AD=AC∴AB=在Rt△ABE與Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽Rt△ADC,∴ABAD即2R=AB?ACAD=4∴⊙O的直徑等于52故答案選:A.【點睛】本題主要考查了圓周角定理、勾股定理,解題的關鍵是掌握輔助線的作法.6、B【解析】試題解析:延長ED交BC于F,∵AB∥DE,∴在△CDF中,故故選B.7、C【解析】試題分析:通過圖示可知,要想通過圓,則可以是圓柱、圓錐、球,而能通過三角形的只能是圓錐,綜合可知只有圓錐符合條件.故選C8、D【解析】
根據實數的運算法則即可一一判斷求解.【詳解】①有理數的0次冪,當a=0時,a0=0;②為同底數冪相乘,底數不變,指數相加,正確;③中2–2=,原式錯誤;④為有理數的混合運算,正確;⑤為合并同類項,正確.故選D.9、C【解析】
原式去括號合并同類項即可得到結果.【詳解】原式,故選:C.【點睛】本題主要考查了整式的加減運算,熟練掌握去括號及合并同類項是解決本題的關鍵.10、C【解析】分析:根據圖象的旋轉變化規(guī)律以及二次函數的平移規(guī)律得出平移后解析式,進而求出m的值,由2017÷5=403…2,可知點P(2018,m)在此“波浪線”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可.詳解:當y=0時,﹣x(x﹣5)=0,解得x1=0,x2=5,則A1(5,0),∴OA1=5,∵將C1繞點A1旋轉180°得C2,交x軸于點A2;將C2繞點A2旋轉180°得C3,交x軸于點A3;…;如此進行下去,得到一“波浪線”,∴A1A2=A2A3=…=OA1=5,∴拋物線C404的解析式為y=(x﹣5×403)(x﹣5×404),即y=(x﹣2015)(x﹣2020),當x=2018時,y=(2018﹣2015)(2018﹣2020)=﹣1,即m=﹣1.故選C.點睛:此題主要考查了二次函數的平移規(guī)律,根據已知得出二次函數旋轉后解析式是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1:1.【解析】試題分析:由DE∥BC,可得△ADE∽△ABC,根據相似三角形的面積之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.考點:相似三角形的性質.12、①③④【解析】分析:根據兩個向量垂直的判定方法一一判斷即可;詳解:①∵2×(?1)+1×2=0,∴與垂直;②∵∴與不垂直.③∵∴與垂直.④∵∴與垂直.故答案為:①③④.點睛:考查平面向量,解題的關鍵是掌握向量垂直的定義.13、-1【解析】
根據“兩數相乘,異號得負,并把絕對值相乘”即可求出結論.【詳解】故答案為【點睛】本題考查了有理數的乘法,牢記“兩數相乘,同號得正,異號得負,并把絕對值相乘”是解題的關鍵.14、x≠1【解析】
根據分母不等于2列式計算即可得解.【詳解】由題意得,x-1≠2,解得x≠1.故答案為x≠1.【點睛】本題考查的知識點為:分式有意義,分母不為2.15、13【解析】
根據同時同地物高與影長成比列式計算即可得解.【詳解】解:設旗桿高度為x米,由題意得,,解得x=13.故答案為13.【點睛】本題考查投影,解題的關鍵是應用相似三角形.16、2【解析】
根據有理數的加法法則計算即可.【詳解】.故答案為:2.【點睛】本題考查有理數的加法計算,熟練掌握加法法則是關鍵.三、解答題(共8題,共72分)17、(1)y=﹣(x﹣1)2+9,D(1,9);(2)p=﹣1;(3)存在點Q(2,1)使△QBC的面積最大.【解析】分析:(1)把點B的坐標代入y=ax2+2x+1求得a的值,即可得到該拋物線的解析式,再把所得解析式配方化為頂點式,即可得到拋物線頂點D的坐標;(2)由題意可知點P在直線CD上時,|PC﹣PD|取得最大值,因此,求得點C的坐標,再求出直CD的解析式,即可求得符合條件的點P的坐標,從而得到p的值;(3)由(1)中所得拋物線的解析式設點Q的坐標為(m,﹣m2+2m+1)(0<m<4),然后用含m的代數式表達出△BCQ的面積,并將所得表達式配方化為頂點式即可求得對應點Q的坐標.詳解:(1)∵拋物線y=ax2+2x+1經過點B(4,0),∴16a+1+1=0,∴a=﹣1,∴拋物線的解析式為y=﹣x2+2x+1=﹣(x﹣1)2+9,∴D(1,9);(2)∵當x=0時,y=1,∴C(0,1).設直線CD的解析式為y=kx+b.將點C、D的坐標代入得:,解得:k=1,b=1,∴直線CD的解析式為y=x+1.當y=0時,x+1=0,解得:x=﹣1,∴直線CD與x軸的交點坐標為(﹣1,0).∵當P在直線CD上時,|PC﹣PD|取得最大值,∴p=﹣1;(3)存在,理由:如圖,由(2)知,C(0,1),∵B(4,0),∴直線BC的解析式為y=﹣2x+1,過點Q作QE∥y軸交BC于E,設Q(m,﹣m2+2m+1)(0<m<4),則點E的坐標為:(m,﹣2m+1),∴EQ=﹣m2+2m+1﹣(﹣2m+1)=﹣m2+4m,∴S△QBC=(﹣m2+4m)×4=﹣2(m﹣2)2+1,∴m=2時,S△QBC最大,此時點Q的坐標為:(2,1).點睛:(1)解第2小題時,知道當點P在直線CD上時,|PC﹣PD|的值最大,是找到解題思路的關鍵;(2)解第3小題的關鍵是設出點Q的坐標(m,﹣m2+2m+1)(0<m<4),并結合點B、C的坐標把△BCQ的面積用含m的代數式表達出來.18、15【解析】試題分析:設騎車學生的速度為,利用時間關系列方程解應用題,一定要檢驗.試題解析:解:設騎車學生的速度為,由題意得,解得.經檢驗是原方程的解.答:騎車學生的速度為15.19、1【解析】
原式第一項利用乘方法則計算,第二項利用特殊角的三角函數值計算,第三項利用零指數冪法則計算,最后一項利用絕對值的代數意義化簡即可得到結果.【詳解】解:原式=1﹣1×22+1+2=1﹣2+1+2【點睛】此題考查了含有特殊角的三角函數值的運算,熟練掌握各運算法則是解題的關鍵.20、(1);(2).【解析】【分析】(1)根據題意可求得2個“-2”所占的扇形圓心角的度數,再利用概率公式進行計算即可得;(2)由題意可得轉出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情況,再找出符合條件的可能性,根據概率公式進行計算即可得.【詳解】(1)由題意可知:“1”和“3”所占的扇形圓心角為120°,所以2個“-2”所占的扇形圓心角為360°-2×120°=120°,∴轉動轉盤一次,求轉出的數字是-2的概率為=;(2)由(1)可知,該轉盤轉出“1”、“3”、“-2”的概率相同,均為,所有可能性如下表所示:第一次第二次1-231(1,1)(1,-2)(1,3)-2(-2,1)(-2,-2)(-2,3)3(3,1)(3,-2)(3,3)由上表可知:所有可能的結果共9種,其中數字之積為正數的的有5種,其概率為.【點睛】本題考查了列表法或樹狀圖法求概率,用到的知識點為:概率=所求情況數與總情況數之比.21、x=1【解析】
分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到分式方程的解.【詳解】方程兩邊都乘以x(x﹣2),得:x=1(x﹣2),解得:x=1,檢驗:x=1時,x(x﹣2)=1×1=1≠0,則分式方程的解為x=1.【點睛】本題考查了解分式方程,利用了轉化的思想,解分式方程注意要檢驗.22、(1)平均數5.6(萬元);眾數是4(萬元);中位數是5(萬元);(2)今年每個銷售人員統(tǒng)一的銷售標準應是5萬元.【解析】
(1)根據平均數公式求得平均數,根據次數出現最多的數確定眾數,按從小到大順序排列好后求得中位數.
(2)根據平均數,中位數,眾數的意義回答.【詳解】解:(1)平均數=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(萬元);出現次數最多的是4萬元,所以眾數是4(萬元);因為第五,第六個數均是5萬元,所以中位數是5(萬元).(2)今年每個銷售人員統(tǒng)一的銷售標準應是5萬元.理由如下:若規(guī)定平均數5.6萬元為標準,則多數人無法或不可能超額完成,會挫傷員工的積極性;若規(guī)定眾數4萬元為標準,則大多數人不必努力就可以超額完成,不利于提高年銷售額;若規(guī)定中位數5萬元為標準,則大多數人能完成或超額完成,少數人經過努力也能完成.因此把5萬元定為標準比較合理.【點睛】本題考查的知識點是眾數、平均數以及中位數,解題的關鍵是熟練的掌握眾數、平均數以及中位數.23、原不等式組的解集為,它的所有整數解為0,1.【解析】
先求出不等式組中每一個不等式的解集,再求出它們的公共部分,然后寫出它的所有整數解即可.【詳解】解:,解不等式①,得,解不等式②,得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025陜西建筑安全員知識題庫及答案
- 2025年重慶市安全員-B證(項目經理)考試題庫
- 2025年江西省建筑安全員《A證》考試題庫
- 【大學課件】工程倫理
- 【大學課件】工程建設監(jiān)理概論
- 《答謝中書書》課件1
- 物業(yè)客服培訓課件
- 單位管理制度展示選集人員管理十篇
- 2025年中國航空貨物運輸保險行業(yè)市場發(fā)展現狀及投資方向研究報告
- 單位管理制度收錄大合集【職員管理篇】
- SB/T 10412-2007速凍面米食品
- 數控線切割機床的手工編程
- -油水井小修工藝技術課件
- (完整版)兒童醫(yī)學康復科疾病護理常規(guī)
- 2022閥門制造作業(yè)指導書
- 科技創(chuàng)新社團活動教案課程
- 建筑結構加固工程施工質量驗收規(guī)范表格
- 部編版語文六年級上冊作文總復習課件
- 無水氯化鈣MSDS資料
- 專利產品“修理”與“再造”的區(qū)分
- 氨堿法純堿生產工藝概述
評論
0/150
提交評論