生物表面活性劑課件_第1頁
生物表面活性劑課件_第2頁
生物表面活性劑課件_第3頁
生物表面活性劑課件_第4頁
生物表面活性劑課件_第5頁
已閱讀5頁,還剩65頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

生物表面活性劑生物表面活性劑Introduction

Biosurfactants(amphiphiliccompounds)(synthesizedbymicroorganisms)hydrophobic(nonpolar)hydrophilic(polar)thatconferabilitytoaccumulatebetweenfluidphasessuchasoil/waterorair/water,reducingthesurfaceandinterfacialtensionsandformingemulsions.household、industryandagriculturemono-,oligo-orpolysaccharides(多糖),peptides(縮氨酸)orproteinssaturated,unsaturatedandhydroxylatedfattyacidsorfattyalcoholsIntroductionBiosurfactant生物表面活性劑課件生物表面活性劑課件生物表面活性劑課件生物表面活性劑課件生物表面活性劑課件生物表面活性劑課件PropertiesSurfaceandinterfaceactivitybiodegradability(bioremediation).emulsifying

anddemulsifyingabilityantimicrobialactivityPropertiesSurfaceandinterfacSurfaceandinterfaceactivity

Ingeneral,biosurfactantsaremoreeffectiveandefficientandtheirCMC(criticalmicelleconcentration)isabout10-40timeslowerthanchemicalsurfactants,i.e.,lesssurfactantisnecessarytogetamaximaldecreaseonST.

Agoodsurfactantcanlowersurfacetension(ST)ofwaterfrom72to35mN/mandtheinterfacialtension(IT)water/hexadecane(十六烷)from40to1mN/m.SurfaceandinterfaceactivityThebiosurfactantsaccumulateattheinterfacebetweentwoimmisciblefluidsorbetweenafluidandasolid..(figure1)Byreducingsurface(liquid-air)andinterfacial(liquid-liquid)tensiontheyreducetherepulsiveforcesbetweentwodissimilarphasesandallowthesetwophasestomixandinteractmoreeasilyThebiosurfactantsaccumulateBiosurfactantactivitiesdependontheconcentrationofthesurface-activecompoundsuntilthecriticalmicelleconcentration(CMC)isobtained.AtconcentrationsabovetheCMC,biosurfactantmoleculesassociatetoformmicelles,bilayersandvesicles(Figure2).TheCMCiscommonlyusedtomeasuretheefficiencyofsurfactant.EfficientbiosurfactantshavealowCMC,whichmeansthatlessbiosurfactantisrequiredtodecreasethesurfacetension.Biosurfactantactivitiesdepe

Thebiosurfactanteffectivenessisdeterminedbymeasuringitsabilitytochangesurfaceandinterfacialtensions,stabilizationofemulsionsandbystudyingitshydrophilic-lipophilicbalance(HLB).EmulsifierswithlowHLBarelipophilicandstabilizewater-in-oilemulsification,whereasemulsifierswithhighHLBhavetheoppositeeffectandconferbetterwatersolubility

Lowtoxicity

Forexample:AbiosurfactantfromP.aeruginosa(綠膿假單胞菌)(wascomparedwithasyntheticsurfactant(MarlonA-350)widelyusedinindustryintermsoftoxicityandmutagenicproperties.Bothassaysindicatedthehighertoxicityandmutageniceffectofthechemical-derivedsurfactantwhereasbiosurfactantwasconsideredslightlytonon-toxicandnon-mutagenic.lowornon-toxicproductsandtherefore,appropriateforpharmaceutical,cosmeticandfooduses.LowtoxicityForexample:AEmulsionformingandemulsionbreaking

Anemulsionisaheterogeneoussystem,consistingofatleastoneimmiscibleliquidintimatelydispersedinanotherintheformofdroplets,whosediameteringeneralexceeds0.1μm.Emulsionshaveaninternalordispersedandanexternalorcontinuousphase,sotherearegenerallytwotypes:oil-in-water(o/w)orwater-in-oil(w/o)emulsions.

Suchsystemspossessaminimalstability,whichmaybeaccentuatedbyadditivessuchassurface-activeagents(surfactants).Thus,stableemulsionscanbeproducedwithalifespanofmonthsandyears.Biosurfactantsmaystabilize(emulsifiers)ordestabilize(de-emulsifiers)theemulsion.High-molecular-massbiosurfactantsareingeneralbetteremulsifiersthanlow-molecular-massbiosurfactants.EmulsionformingandemulsionAntimicrobialactivity

Asignificativereductiononthemycoflora(真菌群)presentinstoredgrainsofcorn,peanutsandcottonseedswasobservedatiturinconcentrationof50-100ppm).Inactivationofenvelopedvirussuchasherpes(皰疹)andretrovirus(逆轉(zhuǎn)錄酶病毒)wasobservedwith80mMofsurfactin(脂肽).

Severalbiosurfactantshaveshownantimicrobialactionagainstbacteria,fungi(真菌),algae(藻類)andviruses.

Thelipopeptideiturin(脂肽伊枯草菌素)fromB.subtilis(枯草芽孢桿菌)showedpotentantifungalactivity.

AntimicrobialactivityAProduction

Biosurfactantsdonotcompeteeconomicallywithsyntheticsurfactants.Toreduceproductioncosts,othercarbonsources,suchasoliveoil(橄欖油),milleffluent(工廠廢水),whey(乳清)fromcheesemaking,andcassavaflourwater(木薯粉水),usedvegetableoils,molasses(糖漿)(by-product).

Biosurfactantshavebeensynthesizedbyvariousresearchersusingdifferentmicroorganismsandcarbonsources.Thecarbonsourcesusedforbiosurfactantproductionarehydrocarbons,

carbohydrates,andvegetableoils.ProductionBiosurfactanProductionmethodsNaturalbiologicalextractmethod、Microorganismfermentationmethod、EnzymecatalyticmethodPurificationmethodsPrecipitationmethod、Extractionmethod、Superfilteringmethod、Foamseparationmethod、Adsorptionmethod、Columnchromatographymethod、Thinlayerchromatographymethod、Highperformanceliquidchromatographymethod、Liquidsurfaceadsorptionenrichmentmethod、Liquidmembraneseparationmethod.ProductionmethodsFig.2.Structureoffourdifferentrhamnolipidsproducedby

P.aeruginosa.Fig.2.Structureoffourd生物表面活性劑課件FactorsAffectingBiosurfactant

ProductionEffectofCarbonSourceonBiosurfactantsProduction

carbohydratehydrocarbonvegetableoilsFactorsAffectingBiosurfactanEffectofSupportMaterialandRelationshipwithWater

Supportmaterialforimmobilizedenzymeaffectsthe

watercontentintheproximityoftheenzymeandthe

partitioningofreactantsand/orproductsinthereaction

mixture.Sincethermalstabilityiscloselyrelatedtothe

amountofwaterinclosevicinityoftheenzymesmolecule.Theidealcarriershouldnotretainwaterthan

necessarytoreducetheriskofenzymedenaturation(變性).

Immobilizationonhydrophilicsupportsoftenleads

toalossoflipase(脂肪酶)activityastheenzymeundergoesa

conformational(構(gòu)象)changetoaformofreducedactivity.

Thesesupportmaterialsmayalsoreducehydrophobic

substratesolubilityinhydrophilicregions,thereby

reducingthe

accessibilityofsubstratetotheactivesites.EffectofSupportMaterialandEffectofEnvironmentalFactorsonBiosurfactantsProduction

pHtemperatureagitation(攪拌)speedoxygenavailabilityRhamnolipidproductioninpseudomonassp(假單胞菌)wasitsmaximumatapHrangefrom

6to

6.5and

decreasedsharplyabovepH7.

Inaddition,surfacetensionandCMCsofabiosurfactantproduct

remainedstableoverawiderangeofpHvalues,whereasemulsificationhadanarrowerpHrange.EffectofEnvironmentalFactor

AthermophilicBacillussp(芽孢桿菌)grewandproducedbiosurfactantattemperatureabove40℃.Heattreatmentofsomebiosurfactantscausednoappreciablechangeinbiosurfactantproperties,suchastheloweringofthesurfacetensionandinterfacialtensionandtheemulsificationefficiency,allofthatremainedstableafterautoclaving(高壓滅菌)at120℃for15min.

AnincreaseinagitationspeedresultinthereductionofbiosurfactantyieldduetotheeffectofshearinNocardia(土壤絲菌屬).Onotherhand,inyeast,biosurfactantproductionincreaseswhentheagitationandaerationratesareincreased.

Saltconcentrationalsoaffectedbiosurfactantproductiondependingonitseffectsoncellularactivity.Some

biosurfactantproducts,however,werenotaffectedby

saltconcentrationsupto10%(wt/vol),althoughslight

reductionintheCMCsweredetected.AthermophilicBacillusspamodifieddrop-collapsetechniqueforsurfactantquantitationandscreeningofbiosurfactantproducingmicroorganismsQualitativedrop-collapsetestAdropofwaterappliedtoahydrophobicsurfaceintheabsenceofsurfactantswillformabead,asshowninFig.1(A).Thebeadforms

becausethepolarwatermoleculesarerepelledfromthehydrophobicsurface.Incontrast,ifthewaterdropletcontainssurfactant,theforceorinterfacialtensionbetweenthewaterdropandthehydrophobicsurfaceisreduced,whichresultsinthespreadingofthewaterdropoverthehydrophobicsurface(Fig.1,B).Theamountofsurfactantrequiredtocausedrop-collapseisdependentontheabilityofthesurfactanttoreducesurfaceandinterfacialtension.Themorepotentthesurfactant,thesmallerthequantitythatcanbedetected.

(A)Watercontrol(nosurfactant),(B)1000mg/Lrhamnolipid.amodifieddrop-collapsetechsurfactantquantitationbythedrop-collapseQuantitativedrop-collapsemethod:(A)Watercontrol,(B)25mg/Lrhamnolipid,(C)50mg/Lrhamnolipid,(D)75mg/Lrhamnolipidand(E)100mg/Lrhamnolipid.Inthiscase,asthesurfactantconcentrationincreased,thediameterofthesampledropincreased.surfactantquantitationbytheQuantitativeresultsfortwosurfactants,rhamnolipidandSDS,arepresentedasstandardcurvesinFig.2.Alinearcorrelationwasfoundbetweentherhamnolipidconcentrationandthedropdiameter,intherangeof0to100mg/L,withanr2=of0.997(Fig.2A).ForSDS(Fig.2B),concentrationsbetween0and2400mg/Lwerelinearlycorrelatedwithdropdiameter(r2=50.989).Fig.2.Thequantitativedrop-collapsemethod.Thefigureshowstheresultsobtainedwithtwodifferentsurfactants:(A)P.aeruginosaIGB83withaCMCof27mg/Land(B)SDSwithaCMCof1845mg/L.Eachpointrepresentsthemeanandstandarddeviationoffivereplicatesfromexperimentsthatwerecarriedoutintriplicate.Quantitativeresultsfortwo

PotentialCommercial

Applications

Mostsurfactantsarechemicallysynthesized.Nevertheless,inrecentyears,muchattentionhasbeendirectedtowardbiosurfactantsduetotheirbroad-rangefunctionalpropertiesandthediversesyntheticcapabilitiesofmicrobes.Mostimportantistheirenvironmentalacceptability,becausetheyarereadilybiodegradableandhavelowertoxicitythansyntheticsurfactants.Anumberofapplicationsof

biosurfactantshavebeenenvisaged.MEOR、FoodIndustry、CosmeticIndustry、MedicinalUse、Soil

BioremediationPotentialCommercialApplicatBiosurfactantsinMicrobialEnhancedOilRecovery(MEOR)

Fig.Mechanismofenhancedoilrecoverybybiosurfactants.theoilistrappedintheporesbycapillary

pressure.

Biosurfactantsreduceinterfacialtensionbetweenoil/waterandoil/rock.Thisreducesthecapillaryforcespreventingoilfrommovingthroughrockpores.Biosurfactantscanalsobindtightlytotheoil-waterinterfaceandformemulsion.Thisstabilizesthedesorbedoilinwaterandallowsremovalofoilalongwiththeinjectionwater.

BiosurfactantsinMicrobialETheApplicationofBiosurfactantsforSoil

BioremediationThebiologicalremediationprocesscanbeperformed(i)insitu(ii)inapreparedbed(

iii)inaslurryreactorsystemInsituprocessesareusuallyaccomplishedbyadditionofmicrobialnutrientstothesoil,whichallowsconsiderablegrowthofsoilmicrobialindigenouspopulation.Thusincreasedmicrobialbiomassinthesoil.(fig1)TheApplicationofBiosurfacta生物表面活性劑課件Figure3Mechanismofbiosurfactantactivityinmetal-contaminatedsoilduetotheloweringoftheinterfacialtension.Figure3MechanismofbiosurfConclusion

Advantage:

higherbiodegradability,betterenvironmentalcompatibility,higherfoaming,highselectivityandhighspecificactivityatextremetemperature,pHandsalinity.

Therethedemandofbiosurfactantsisincreasingworldwideinrecentyears.However,biosurfactantsdonoteconomicallycompetewithchemicallysynthesizedsurfactants.That’swhythereisagreatscopeforfurtherresearchtofindamoreeconomicalproductionprocessandtechnology.ConclusionAdvantage:higherThankYouThankYou

結(jié)束語謝謝大家聆聽?。?!35

結(jié)束語謝謝大家聆聽!??!35生物表面活性劑生物表面活性劑Introduction

Biosurfactants(amphiphiliccompounds)(synthesizedbymicroorganisms)hydrophobic(nonpolar)hydrophilic(polar)thatconferabilitytoaccumulatebetweenfluidphasessuchasoil/waterorair/water,reducingthesurfaceandinterfacialtensionsandformingemulsions.household、industryandagriculturemono-,oligo-orpolysaccharides(多糖),peptides(縮氨酸)orproteinssaturated,unsaturatedandhydroxylatedfattyacidsorfattyalcoholsIntroductionBiosurfactant生物表面活性劑課件生物表面活性劑課件生物表面活性劑課件生物表面活性劑課件生物表面活性劑課件生物表面活性劑課件PropertiesSurfaceandinterfaceactivitybiodegradability(bioremediation).emulsifying

anddemulsifyingabilityantimicrobialactivityPropertiesSurfaceandinterfacSurfaceandinterfaceactivity

Ingeneral,biosurfactantsaremoreeffectiveandefficientandtheirCMC(criticalmicelleconcentration)isabout10-40timeslowerthanchemicalsurfactants,i.e.,lesssurfactantisnecessarytogetamaximaldecreaseonST.

Agoodsurfactantcanlowersurfacetension(ST)ofwaterfrom72to35mN/mandtheinterfacialtension(IT)water/hexadecane(十六烷)from40to1mN/m.SurfaceandinterfaceactivityThebiosurfactantsaccumulateattheinterfacebetweentwoimmisciblefluidsorbetweenafluidandasolid..(figure1)Byreducingsurface(liquid-air)andinterfacial(liquid-liquid)tensiontheyreducetherepulsiveforcesbetweentwodissimilarphasesandallowthesetwophasestomixandinteractmoreeasilyThebiosurfactantsaccumulateBiosurfactantactivitiesdependontheconcentrationofthesurface-activecompoundsuntilthecriticalmicelleconcentration(CMC)isobtained.AtconcentrationsabovetheCMC,biosurfactantmoleculesassociatetoformmicelles,bilayersandvesicles(Figure2).TheCMCiscommonlyusedtomeasuretheefficiencyofsurfactant.EfficientbiosurfactantshavealowCMC,whichmeansthatlessbiosurfactantisrequiredtodecreasethesurfacetension.Biosurfactantactivitiesdepe

Thebiosurfactanteffectivenessisdeterminedbymeasuringitsabilitytochangesurfaceandinterfacialtensions,stabilizationofemulsionsandbystudyingitshydrophilic-lipophilicbalance(HLB).EmulsifierswithlowHLBarelipophilicandstabilizewater-in-oilemulsification,whereasemulsifierswithhighHLBhavetheoppositeeffectandconferbetterwatersolubility

Lowtoxicity

Forexample:AbiosurfactantfromP.aeruginosa(綠膿假單胞菌)(wascomparedwithasyntheticsurfactant(MarlonA-350)widelyusedinindustryintermsoftoxicityandmutagenicproperties.Bothassaysindicatedthehighertoxicityandmutageniceffectofthechemical-derivedsurfactantwhereasbiosurfactantwasconsideredslightlytonon-toxicandnon-mutagenic.lowornon-toxicproductsandtherefore,appropriateforpharmaceutical,cosmeticandfooduses.LowtoxicityForexample:AEmulsionformingandemulsionbreaking

Anemulsionisaheterogeneoussystem,consistingofatleastoneimmiscibleliquidintimatelydispersedinanotherintheformofdroplets,whosediameteringeneralexceeds0.1μm.Emulsionshaveaninternalordispersedandanexternalorcontinuousphase,sotherearegenerallytwotypes:oil-in-water(o/w)orwater-in-oil(w/o)emulsions.

Suchsystemspossessaminimalstability,whichmaybeaccentuatedbyadditivessuchassurface-activeagents(surfactants).Thus,stableemulsionscanbeproducedwithalifespanofmonthsandyears.Biosurfactantsmaystabilize(emulsifiers)ordestabilize(de-emulsifiers)theemulsion.High-molecular-massbiosurfactantsareingeneralbetteremulsifiersthanlow-molecular-massbiosurfactants.EmulsionformingandemulsionAntimicrobialactivity

Asignificativereductiononthemycoflora(真菌群)presentinstoredgrainsofcorn,peanutsandcottonseedswasobservedatiturinconcentrationof50-100ppm).Inactivationofenvelopedvirussuchasherpes(皰疹)andretrovirus(逆轉(zhuǎn)錄酶病毒)wasobservedwith80mMofsurfactin(脂肽).

Severalbiosurfactantshaveshownantimicrobialactionagainstbacteria,fungi(真菌),algae(藻類)andviruses.

Thelipopeptideiturin(脂肽伊枯草菌素)fromB.subtilis(枯草芽孢桿菌)showedpotentantifungalactivity.

AntimicrobialactivityAProduction

Biosurfactantsdonotcompeteeconomicallywithsyntheticsurfactants.Toreduceproductioncosts,othercarbonsources,suchasoliveoil(橄欖油),milleffluent(工廠廢水),whey(乳清)fromcheesemaking,andcassavaflourwater(木薯粉水),usedvegetableoils,molasses(糖漿)(by-product).

Biosurfactantshavebeensynthesizedbyvariousresearchersusingdifferentmicroorganismsandcarbonsources.Thecarbonsourcesusedforbiosurfactantproductionarehydrocarbons,

carbohydrates,andvegetableoils.ProductionBiosurfactanProductionmethodsNaturalbiologicalextractmethod、Microorganismfermentationmethod、EnzymecatalyticmethodPurificationmethodsPrecipitationmethod、Extractionmethod、Superfilteringmethod、Foamseparationmethod、Adsorptionmethod、Columnchromatographymethod、Thinlayerchromatographymethod、Highperformanceliquidchromatographymethod、Liquidsurfaceadsorptionenrichmentmethod、Liquidmembraneseparationmethod.ProductionmethodsFig.2.Structureoffourdifferentrhamnolipidsproducedby

P.aeruginosa.Fig.2.Structureoffourd生物表面活性劑課件FactorsAffectingBiosurfactant

ProductionEffectofCarbonSourceonBiosurfactantsProduction

carbohydratehydrocarbonvegetableoilsFactorsAffectingBiosurfactanEffectofSupportMaterialandRelationshipwithWater

Supportmaterialforimmobilizedenzymeaffectsthe

watercontentintheproximityoftheenzymeandthe

partitioningofreactantsand/orproductsinthereaction

mixture.Sincethermalstabilityiscloselyrelatedtothe

amountofwaterinclosevicinityoftheenzymesmolecule.Theidealcarriershouldnotretainwaterthan

necessarytoreducetheriskofenzymedenaturation(變性).

Immobilizationonhydrophilicsupportsoftenleads

toalossoflipase(脂肪酶)activityastheenzymeundergoesa

conformational(構(gòu)象)changetoaformofreducedactivity.

Thesesupportmaterialsmayalsoreducehydrophobic

substratesolubilityinhydrophilicregions,thereby

reducingthe

accessibilityofsubstratetotheactivesites.EffectofSupportMaterialandEffectofEnvironmentalFactorsonBiosurfactantsProduction

pHtemperatureagitation(攪拌)speedoxygenavailabilityRhamnolipidproductioninpseudomonassp(假單胞菌)wasitsmaximumatapHrangefrom

6to

6.5and

decreasedsharplyabovepH7.

Inaddition,surfacetensionandCMCsofabiosurfactantproduct

remainedstableoverawiderangeofpHvalues,whereasemulsificationhadanarrowerpHrange.EffectofEnvironmentalFactor

AthermophilicBacillussp(芽孢桿菌)grewandproducedbiosurfactantattemperatureabove40℃.Heattreatmentofsomebiosurfactantscausednoappreciablechangeinbiosurfactantproperties,suchastheloweringofthesurfacetensionandinterfacialtensionandtheemulsificationefficiency,allofthatremainedstableafterautoclaving(高壓滅菌)at120℃for15min.

AnincreaseinagitationspeedresultinthereductionofbiosurfactantyieldduetotheeffectofshearinNocardia(土壤絲菌屬).Onotherhand,inyeast,biosurfactantproductionincreaseswhentheagitationandaerationratesareincreased.

Saltconcentrationalsoaffectedbiosurfactantproductiondependingonitseffectsoncellularactivity.Some

biosurfactantproducts,however,werenotaffectedby

saltconcentrationsupto10%(wt/vol),althoughslight

reductionintheCMCsweredetected.AthermophilicBacillusspamodifieddrop-collapsetechniqueforsurfactantquantitationandscreeningofbiosurfactantproducingmicroorganismsQualitativedrop-collapsetestAdropofwaterappliedtoahydrophobicsurfaceintheabsenceofsurfactantswillformabead,asshowninFig.1(A).Thebeadforms

becausethepolarwatermoleculesarerepelledfromthehydrophobicsurface.Incontrast,ifthewaterdropletcontainssurfactant,theforceorinterfacialtensionbetweenthewaterdropandthehydrophobicsurfaceisreduced,whichresultsinthespreadingofthewaterdropoverthehydrophobicsurface(Fig.1,B).Theamountofsurfactantrequiredtocausedrop-collapseisdependentontheabilityofthesurfactanttoreducesurfaceandinterfacialtension.Themorepotentthesurfactant,thesmallerthequantitythatcanbedetected.

(A)Watercontrol(nosurfactant),(B)1000mg/Lrhamnolipid.amodifieddrop-collapsetechsurfactantquantitationbythedrop-collapseQuantitativedrop-collapsemethod:(A)Watercontrol,(B)25mg/Lrhamnolipid,(C)50mg/Lrhamnolipid,(D)75mg/Lrhamnolipidand(E)100mg/Lrhamnolipid.Inthiscase,asthesurfactantconcentrationincreased,thediameterofthesampledropincreased.surfactantquantitationbytheQuantitativeresultsfortwosurfactants,rhamnolipidandSDS,arepresentedasstandardcurvesinFig.2.Alinearcorrelationwasfoundbetweentherhamnolipidconcentrationandthedropdiameter,intherangeof0to100mg/L,withanr2=of0.997(Fig.2A).ForSDS(Fig.2B),concentrationsbetween0and2400mg/Lwerelinearlycorrelatedwithdropdiameter(r2=50.989).Fig.2.Thequantitativedrop-collapsemethod.Thefigureshowstheresultsobtainedwithtwodifferentsurfactants:(A)P.aeruginosaIGB83withaCMCof27mg/Land(B)SDSwithaCMCof1845mg/L.Eachpointrepresentsthemea

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論