版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Mathematical
PhysicsCylindrical
FunctionsCylindrical
FunctionsFundamental
PropertiesEigenvalue
ProblemSymmetric
Cylindrical
ProblemsGeneral
Cylindrical
ProblemsConclusionFundamental
PropertiesCylindrical
Functions
of
order
mDefinition:x2
y"xy'(x2
m2
)
y
02k
mx1)k(k
m
1)(!2k
0
kJm
(
x)
mm
()xJcos
mx
m
()xJsin
mx()xNHm
(x)
Jm
(x)
i
Nm
(x)Special
solution
ofClassification:Bessel
FunctionofordermannFunctionofordermHankel
Function
ofordermFundamental
PropertiesGraphs
of
Cylindrical
FunctionsBessel
Functionsann
FunctionsProperties
of
Cylindrical
FunctionsSymmetryFor
m
N,
Zm(-x)
=(-1)m
Zm(x)Asymptotic
PropertiesNull
pointsRecurrence
FormulasBesselFunctionsann
FunctionsAsymptotic
PropertiesAs x
→0,
wehave
:
2Jm0N0
(
x)
2
ln
x
,
Nm0J
0
(
x)
1,As x
→∞,we
have:2exp[
i(H
(
x)
exp[i(
xH
( )
sin(
x
cos(
x
1m
x
2
xm
2
x
2
xJm
(
x)
Nm
(
x)
Null
Points
of Bessel
Functions2 4From
the
asymptotic
formula,
oneobtainscos(
x
1
m
1
)
0
x
1
m
1
(n
1
)2
4
2
4
2x(m)
(n
1
m
1
)nThe
positive
zerosappear
alterna
y.1
1
1
1
10xx(0)
x(1)
)2(
x
m)(
x
m1)(According
to
the
graph:There
are
infini y
many
positive
zeros.0
x(m)
x(m)
x(m)
x(m)
x(m)
1
2
3
n
n1The positive
zeroincreases
with
the
orderm.1
1
2
2
30x()m
x
m1)(
x()m
x
m1)(
x()mRecurrence
Formulas[xm
Zm
(
x)]'
xm
Zm1(
x)[xm
Zm
(
x)]'
xm
Zm1(
x)Basic
recurrence
formulasCorollary
2Zm
'mZm
/
x
Zm1Zm
'mZm
/
x
Zm1Corollary
12Zm
'
Zm1
Zm12mZm
/
x
Zm1
Zm1Proof
of
the
recurrence
formula
22k
mx(1)kk
0
k!(k
m
1)Jm
(
x)
21mm(
x2k
)'2k
mk
0
k!(k
m
1)(1)k[J
(
x)
/
x
]'
212k
12k
mxk
1
k!(k
m
1)2k(1)k
212k
12k
m1
(1)k
1xk
1
(k
1)!(k
m
1)l
k
1
lx/
x212l
1m
m2l
m1l
0
l!(l
m
1
1)(1)
Jm1(x)
/
xmApplications
of
the
recurrence
formulas[
x
m
Zm
]'
x
m
Zm1
Zk
xk
1[
x1k
Zk
1
]'[
x
m
Zm
]'
x
m
Zm1
Z0
x
1[
xZ1
]'
xn
Jmdx
xn
xm1[x1m
Jm1]'
dx
xn
Jm1
(n
m
1)
xn1Jm1dx
xn
J0dx
xn
x1[xJ1]'
dx
xn
J1
(n
1)
xn1J1dx
xn
J1
(n
1)xn1J0
(n
1)2
xn2
J0dx
xm
Jm1dx
xm
Jm
c
x3J0dx
x3J1
2x2
J0
4
xJ
0dx
xn
Jmdx
xn
Jm1
(n
m
1)
xn1Jm1dx
xJ0dx
xJ1
xn
J0dx
xn
J1
(n
1)xn1J0
(n
1)2
xn2
J0dxEx.1Ex.2
J1dx
J0Ex.4Ex.3
x2
J1dx
x2
J0
2
xJ
0dxEx.5
xJ
2dx
xJ1
2
J1dx
xm
Jm1dx
xm
Jm
cApplications
of
the
recurrence
formulasEigenvalue
problems
of
Bessel’s
Eq.Theresolution
of
rotational
symmetric
cylindrical
problemsGeneral
eigenvalue
problemsEigenvalue
problemsEigenvalues
andeigenfunctionsOrthogonality
and
completenessTypical
eigenvalue
problemsFiniteness
and
boundary
condition
of
the
1st
kindFiniteness
and
boundary
condition
of
the
2nd
kindBoundaryconditions
ofthe1st
kindut
a22uT
'a2k
2T
0u
T
(t)R()eimu
|t0
f
()eimnT
An
exp(
k
2a2t)R
Cn
Jm
(kn
)
Dn
Nm
(kn
)n1imu
Tn
(t)Rn
()en1n
nA
R
()f
()
(R'
)'
m2
R
k
2
R
0The
resolution
of
rotationalsymmetric
cylindrical
problemGeneral
eigenvalueproblemEigenvalue
problems:S
L
type
boundary
conditionsx2
y"
xy'm2
y
x2
y
0,
0
x
kb2mR
k
2
R
0(R')'Sturm
Liouvi
le
type
boundary
conditionsLet x
=
k
ρ,
y(x)=
R(ρ),
then
wehave:Eigenvalues
and
eigenfunctionsT eral
solution
of
the
universe
eq.
isy(
x)
AJ
m
(
x)
BNm
(
x)Fromboundary
conditions,
weget0nk0
(m)
0kn0
(m)
/
b
0The
eigenfunctions
areRn
()
yn
(x)
Cn
Jm
(
(m)
/
b)
Dn
Nm
(
(m)
/
b),
n
0,1,2,3,n
nOrthogonality
and
completeness0nbRn
(
)Pl
(
)dx
n,l
(N
m
)2NormOrthogonalitynbnR2
(
)d0m
2(N
)
Completenessn
nf
R
()n1f
()
Teralized
Fourier
coefficients
arenbnnf
(
)R
(
)d
1
0(
N
m
)2f
Finiteness
andboundaryconditionof
the
1st
kindTheeigenvalue
problem
isnTheeigenvalues
and
eigenfunctions
arekn
x(m)
/
b,
x(m)
is
the
nth
positive
zero
of
J
(
x)n
n
mRn
(
)
yn
(
x)
Jm
(
x(m)
/
b),
n
1,2,3,2mR
|
b
0R
k
2
R
0,
b(R'
)'The
orthogonality
and
norm
:20nb(
x(m)
)n
m1
n(N
m
)2
1
b2
J
2Rn
(
)Pl
(
)dx
n,l
(N
m
)2bnnf
(
)Rn
(
)d
1
0(N
m
)2f
f
J
(x(m)n
n
n
m
n
/
b)
n1
n1f R
()
f
()
Finiteness
andboundaryconditionof
the
1st
kindCompleteness
:Fourier’s
expansion
coefficients:n
mn
n(
x)xdxf
(
x
/
k
)Jk
(N
)1knb02
m
2
mnn(
x)xdxx(
m
)0f
(bx
/
x(m)
)Jb2(
x(m)
)2
(N
m
)2n
nFiniteness
andboundaryconditionof
the
1st
kindnbnn
1
0(
N
m
)2
(
c)R
(
)
df
f
J
(x(m)n
m
nn
n
/
b)
n1
n1f
R
()
(
c)
1cR
(c)n(N
m
)2nEx.
1:Expand
f
=
δ(ρ-c)in
[0,b]in
ageneralized
Fourierseries
of
the
Bessel
functions
Jm.2(m)nm1
b2
J
2
(x(m)
)/
b)cJ
(cxm1
nnmbnn
R
(
)
d10(
N
m
)2f
f
J
(x(m)n
m
nn
nm
/
b)
n1
n1f
R
()
mnxm
J
(
x)xdxx(
m
)0bm2(
x(m)
)m2
(N
m
)2n
nnx(m)
J2bm(
x(m)
)m1
n0(
m
)nxx
J
(
x)m1m1bm2(
x(m)
)m2
(N
m
)2n
nnx
x(m)
/
bFiniteness
and
boundary
condition
of
the
1st
kindEx.
2:Expand
f
=
ρm
in
[0,b]
in
a
generalized
Fourier
seriesoftheBessel
functions
Jm.(0)2n
0
nn
nf
J
(x
/
b)n1n1f
R
()
dnbnn
R
(
)
1
20(
N
0
)2f
n00x3J
(
x)dxb4(
x(0)
)4
(N
0
)2n
nx(
0)1
002132(
0)nxn
1
nx
J(
x(0)
)4
1
b2
J
2
(
x(0)
)b4
4xJ
2x
J
x3J0dx
x3J1
2x2
J0
4xJ1(0)
3
(0)
(0)(0)
4
2
(0)n1
nn(
x
)
J
(
x
)2b2[(
x
)
4xn
]J1(
xn
)Finiteness
and
boundary
condition
of
the
1st
kindEx.3:Expand
f
=
ρ2
in
[0,b]
in
a
generalized
Fourier
seriesoftheBessel
functions
J0.Finiteness
and
boundary
condition
of
the
2nd
kindThe
eigenvalue
problem
isThe
eigenvalues
and
eigenfunctions
are0(1)0(0)0(0)
xy
(
x)
J
(y
(
x)
J
(J
'
(
x)
0,
n
n
0
n(m)m
nn
nmR
(
)
R
(
)
kn
(m)
/
b,
where
(m)
is
the
nth positive
root
ofn
n
/
b),
n
0,1,2,3,;
/
b),
n
1,2,3,;
m
02mR'|
b
0R
k
2
R
0,
b(R'
)'The
orthogonality
and
norm
:2200
nnm
nn
nnb(
N
0
)2
1
b2
/
J
2
(
(0)
)(
N
m
)2
1
b2
[1
(m
/
(m)
)2
]/
J
2
(
(m)
)Rn
(
)Pl
(
)d
n,l
(
N
m
)2Finiteness
and
boundary
condition
of
the
2nd
kindnbnn
1
0(
N
m
)2
(
c)R
(
)
df
(1)n
0
nn
nf
J
(x
/
b)
n0
n0f
R
()
(
c)
1cR
(c)n(N
m
)2n200
n(1)n1
b2
J
2
(
x(1)
)/
b)cJ
(cx
(0)
x(1)n
n
J
0
'
(
x)
J1(
x)Ex.
1:Expand
f
=
δ(ρ-c) in
[0,b]inageneralized
Fourierseries
of
the
Bessel
functions
J0.nbnn
1
0(
N
0
)21
R
(
)
df
(1)n
0
nn
nf
J
(x
/
b)
n0
n0f
R
()
1
nn
nxJ
(
x)dx00b2(
x(1)
)2
(N
0
)2x(1)
0(1)xxJ1(
x)0n(
x(1)
)2
(N
0
)2n
nb2nx
x(1)
/
b
1b
1
00(
N
0
)2001
R
(
)
df
b10021
b2
J
2
(0)11dFiniteness
and
boundary
condition
of
the
2nd
kindEx.2:Expand
f
=1 in
[0,b]in
ageneralized
Fourierseries
of
the
Bessel
functions
J0.Boundary
conditions
of
the
1st
kindThe
eigenvalue
problem
isBy
boundary
conditions,
one
gets
BmJm
(ka)
Nm
(ka)
A
0Jm
(kb)
N
(kb)2mR
|
a
R
|
b
0R
k
2
R
0,
a
b(R'
)'R(
)
AJ
m
(k
)
BNm
(k
)T eral
solution
isThe
condition
ofnon-zero
solution
isJm
(ka)
Nm
(ka)
0Jm
(kb)
Nm
(kb)Rotational
symmetricproblemsAxial
symmetric
problems
(the
case
of
m
=0)Heat
problemWave
problemSteady
problemRotational
symmetric
problemsHeat
problemWave
problemSteady
problemAxial
symmetric
heat
problemsbnn(b
)J
(k
)d
1
0
n2
20(N
0
)2根據(jù)完備性:A
ut
a22u,
b定解問題為:
2
2u
|
b
0,
u
|t0
f
b
定解問題有軸對稱性,相應(yīng)的半通解為u
n1
An
exp(
a
kn
t)[Cn
J0
(kn
)
Dn
N0
(kn
)]
2
2u(0,t)有界,u(b,t)
0,半通解化為u
n1
An
exp(
a
kn
t)J0
(kn
),
kn
xn
/
b
2
2
(0)由初始條件得:b
n1
An
J0
(kn
)2
2
Example
1半徑為b的無限長圓柱體,柱面上溫度為零,初始溫度分布為
f=b2
–ρ2,確定柱內(nèi)溫度
u
的變化。Solution:以圓柱體的對稱軸為
z
軸,建立柱坐標(biāo)。Axial
symmetric
heat
problemsA
Jbnn(k
)d
1
0
n20(
N
0
)2根據(jù)完備性:A
ut
a22u,
b定解問題為:
2u
|
b
0,
u
|t0
f
A定解問題有軸對稱性,相應(yīng)的半通解為u
n0
An
exp(
a
kn
t)[Cn
J
0
(kn
)
Dn
N0
(kn
)]
2
2u(0,t)有界,u
(b,t)
0,半通解化為u
n0
An
exp(
a
kn
t)J
0
(kn
),
kn
xn
/
b
2
2
(1)由初始條件得:A
n0
An
J0
(kn
)2
Example
2半徑為b的無限長圓柱體,柱面上絕熱,初始溫度分布為
f=
Aρ2
,確定柱內(nèi)溫度
u
的變化。Solution:以圓柱體的對稱軸為
z
軸,建立柱坐標(biāo)。Axial
symmetric
wave
problems
bn(b
)J
(k
)d
1
0
n2
20(N
0
)2根據(jù)完備性:Bn
0,An
utt
a22u,
b定解問題為:
2
2u
|
b
0,
u
|t0
b
,
ut
|t0
0定解問題有軸對稱性,相應(yīng)的半通解為u
(
A
cos
ak
t
B
sin
ak
t)[C
J
(k
)
D
N
(k
)]n1
n
n
n
n
n
0
n
n
0
nu(0,t)有界,u(b,t)
0,半通解化為u
n1
(
An
cos
aknt
Bn
sin
aknt)J
0
(kn
),
kn
xn
/
b
(0)b
n1
An
J
0
(kn
)
2
2
由初始條件得:
0
n1
Bn
akn
J
0
(kn
)Example
3半徑為b的圓形膜,邊緣固定,初始形狀是旋轉(zhuǎn)拋物面f=b2
–ρ2,初始速度為零,求膜的振動(dòng)情況。Solution:以圓形膜的中心為原點(diǎn),建立極坐標(biāo)。Axial
symmetric
wave
problems0
n1n
n
0
nn1n
0
nB
ak
J
(k
)
(
c)
A
J
(k
)由初始條件得:bn
n
(
c)J
(k
)d
1
0
n0ak
(N
0
)2根據(jù)完備性:An
0,Bn
utt
a22u,
bu
|
b
0,
u
|t
0
0,
ut
|t
0
(
c)定解問題為:n1u
(
An
cos
aknt
Bn
sin
aknt)[Cn
J0
(kn
)
Dn
N0
(kn
)]定解問題有軸對稱性,相應(yīng)的半通解為(0)n1n
n
n
n
0
n
n
nu
(
A
cos
ak
t
B
sin
ak
t)J
(k
),
k
x
/
bu(0,t)有界,u(b,t)
0,半通解化為Example
4半徑為b的圓形膜,邊緣固定,初始位移為零,初始速度為
f=δ(ρ-c),求膜的振動(dòng)情況。Solution:以圓形膜的中心為原點(diǎn),建立極坐標(biāo)。Axial
symmetric
steady
problemsbn
J
(k
)d
1
0
n20sinh
kn
L(N
0
)2n根據(jù)完備性:B
2u
|
b
0,
u
|z0
0,
u
|zL
定解問題為:定解問題有軸對稱性,相應(yīng)的半通解為u
(
A
cosh
k
z
B
sinh
k
z)[C
J
(k
)
D
N
(k
)]n1
n
n
n
n
n
0
n
n
0
nu(0,z)有界,u(b,z)
0,半通解化為u
n1
(
An
cosh
kn
z
Bn
sinh
kn
z)J
0
(kn
),
kn
xn
/
b
(0)由下底條件得:0
A
J
(k
)
A
0n1
n
0
n
n由上底條件得:
n1
Bn
sinh(
kn
L)J
0
(kn
)2
Example
5半徑為b,高為L的圓柱體,下底和側(cè)面都保持零度,上底的溫度分布為ρ2,求柱內(nèi)的穩(wěn)恒溫度分布。Solution:以圓柱體的軸為
z
軸,下底中心為原點(diǎn),建立柱坐標(biāo)。uzz
2u
0,
b,
0
z
LAxial
symmetric
steady
problemsn1n1nBn
sinh(
kn
L)J
0
(kn
)B
2
A
sinh(
kn
L)J
0
(kn
)A
由上下底條件得:nbn
1
0sinh
kn
L(N
0
)2nAJ
0
(kn
)d
,
B
根據(jù)完備性:A
2u
|
0,
u
|
B
,
u
|
A
b
z0
zL定解問題為:n1u
[
An
sinh
kn
z
Bn
sinh
kn
(L
z)][Cn
J0
(kn
)
Dn
N0
(kn
)]定解問題有軸對稱性,相應(yīng)的半通解為(0)n10
n
n
n[
An
sinh
kn
z
Bn
sinh
kn
(L
z)]Ju
(k
),
k
x
/
bu(0,z)有界,u(b,z)
0,半通解化為Example
6半徑為b,高為L的圓柱體,側(cè)面電勢保持為零,上底的電勢為A,下底的電勢分布為Bρ2,求柱內(nèi)的電勢分布。Solution:以圓柱體的軸為
z
軸,下底中心為原點(diǎn),建立柱坐標(biāo)。uzz
2u
0,
b,
0
z
LRotational
symmetric
heatproblemsn
1
nA
J
(k
)n1由初始條件得:A
bnnAJ
(k
)d
1
1
n0(
N
1
)2根據(jù)完備性:A
u
|
b
0,
u
|t
0
A
cosut
a22u,
b定解問題為:2
2n1n
n
n
1
n
n
1
nA
exp(
a
k
t)[C
J
(k
)
D
N
(k
)]cosu
定解問題有轉(zhuǎn)動(dòng)對稱性,相應(yīng)的半通解為(1)2
2n1n
n1
nn
nA
exp(
a
k
t)Ju
(k
)
cos
,
k
x
/
bu(0,t)有界,u(b,t)
0,半通解化為Example
7半徑為b的無限長圓柱體,柱面上溫度為零,初始溫度分布為
f=Aρcos
φ,確定柱內(nèi)溫度
u
的變化。Solution:以圓柱體的對稱軸為
z
軸,建立柱坐標(biāo)。Rotational
symmetric
wave
problemsd
bn
J
(k
)
1
2
n20(N
2
)2根據(jù)完備性:Bn
0,An
utt
a22u,
b定解問題為:
2
2u
|
b
0,
u
|t0
(b
)sin
2
,
ut
|t0
0定解問題有轉(zhuǎn)動(dòng)對稱性,相應(yīng)的半通解為u
(
A
cos
ak
t
B
sin
ak
t)[C
J
(k
)
D
N
(k
)]sin
2n1
n
n
n
n
n
2
n
n
2
nu(0,t)有界,u(b,t)
0,半通解化為u
n1
(
An
cos
aknt
Bn
sin
aknt)J
2
(kn
)
sin
2
,
kn
xn
/
b
(2)
n1
An
J
2
(kn
)
2
由初始條件得:
0
n1
Bn
akn
J
2
(kn
)Example
8半徑為b的圓形膜,邊緣固定,初始形狀是
ρ2sin2φ,初始速度為零,求膜的振動(dòng)情況。Solution:以圓形膜的中心為原點(diǎn),建立極坐標(biāo)。Rotational
symmetric
steady
problemsbAJ
(k
)d
1
1
n0sinh
kn
L(N
1
)2n根據(jù)完備性:An
0,Bn
uzz
2u
0,
b,
0
z
L定解問題為:u
|
b
0,
u
|z0
A
sin
,
u
|zL
0定解問題有轉(zhuǎn)動(dòng)對稱性,相應(yīng)的半通解為u
[
A
sinh
k
z
B
sinh
k
(L
z)][C
J
(k
)
D
N
(k
)]sin
n1
n
n
n
n
n
1
n
n
1
nu(0,z)有界,u(b,z)
0,半通解化為u
n1[
An
sinh
kn
z
Bnsinh
kn
(L
z)]J1(kn
)
sin
,
kn
xn
/
b
(1)
0
n1
An
sinh(
kn
L)J1(kn
)
由上下底條件得:
A
n1
Bn
sinh(
kn
L)J1(kn
)Example
9半徑為b,高為L的圓柱體,側(cè)面和上底保持零度,下底的溫度分布為Aρsinφ,求柱內(nèi)的穩(wěn)恒溫度分布。Solution:以圓柱體的軸為
z
軸,下底中心為原點(diǎn),建立柱坐標(biāo)。General
Cylindrical
ProblemsProgramer
,
resolve
the
conditions
into
Fourierserieswith
respect
to
the
variable
.Then,
find
the
symmetric
cylindrical
solutions
foreach
condition
with
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024銷售外包的簡單合同
- 2024版長春房屋買賣合同文本
- 2025場地租賃合同標(biāo)準(zhǔn)范本(含環(huán)保條款)2篇
- 2025年度中央廚房承包合同范本(二零二五年度)4篇
- 2025年度磚廠生產(chǎn)線升級(jí)改造承包合同4篇
- 2025年度磚廠智能化生產(chǎn)系統(tǒng)承包合同4篇
- 2025年度智能溫室大棚使用權(quán)轉(zhuǎn)讓購買合同范本
- 2025年度物業(yè)管理與社區(qū)養(yǎng)老服務(wù)平臺(tái)合同4篇
- 2024年項(xiàng)目委托建設(shè)協(xié)議3篇
- 2025年度醫(yī)療器械注冊代理與風(fēng)險(xiǎn)控制合同3篇
- 城市軌道交通的網(wǎng)絡(luò)安全與數(shù)據(jù)保護(hù)
- 英國足球文化課件
- 《行政職業(yè)能力測驗(yàn)》2023年公務(wù)員考試新疆維吾爾新疆生產(chǎn)建設(shè)兵團(tuán)可克達(dá)拉市預(yù)測試題含解析
- 醫(yī)院投訴案例分析及處理要點(diǎn)
- 燙傷的安全知識(shí)講座
- 工程變更、工程量簽證、結(jié)算以及零星項(xiàng)目預(yù)算程序?qū)嵤┘?xì)則(試行)
- 練習(xí)20連加連減
- 五四制青島版數(shù)學(xué)五年級(jí)上冊期末測試題及答案(共3套)
- 員工內(nèi)部崗位調(diào)換申請表
- 商法題庫(含答案)
- 鋼結(jié)構(gòu)用高強(qiáng)度大六角頭螺栓連接副 編制說明
評論
0/150
提交評論