




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Mathematical
PhysicsCylindrical
FunctionsCylindrical
FunctionsFundamental
PropertiesEigenvalue
ProblemSymmetric
Cylindrical
ProblemsGeneral
Cylindrical
ProblemsConclusionFundamental
PropertiesCylindrical
Functions
of
order
mDefinition:x2
y"xy'(x2
m2
)
y
02k
mx1)k(k
m
1)(!2k
0
kJm
(
x)
mm
()xJcos
mx
m
()xJsin
mx()xNHm
(x)
Jm
(x)
i
Nm
(x)Special
solution
ofClassification:Bessel
FunctionofordermannFunctionofordermHankel
Function
ofordermFundamental
PropertiesGraphs
of
Cylindrical
FunctionsBessel
Functionsann
FunctionsProperties
of
Cylindrical
FunctionsSymmetryFor
m
N,
Zm(-x)
=(-1)m
Zm(x)Asymptotic
PropertiesNull
pointsRecurrence
FormulasBesselFunctionsann
FunctionsAsymptotic
PropertiesAs x
→0,
wehave
:
2Jm0N0
(
x)
2
ln
x
,
Nm0J
0
(
x)
1,As x
→∞,we
have:2exp[
i(H
(
x)
exp[i(
xH
( )
sin(
x
cos(
x
1m
x
2
xm
2
x
2
xJm
(
x)
Nm
(
x)
Null
Points
of Bessel
Functions2 4From
the
asymptotic
formula,
oneobtainscos(
x
1
m
1
)
0
x
1
m
1
(n
1
)2
4
2
4
2x(m)
(n
1
m
1
)nThe
positive
zerosappear
alterna
y.1
1
1
1
10xx(0)
x(1)
)2(
x
m)(
x
m1)(According
to
the
graph:There
are
infini y
many
positive
zeros.0
x(m)
x(m)
x(m)
x(m)
x(m)
1
2
3
n
n1The positive
zeroincreases
with
the
orderm.1
1
2
2
30x()m
x
m1)(
x()m
x
m1)(
x()mRecurrence
Formulas[xm
Zm
(
x)]'
xm
Zm1(
x)[xm
Zm
(
x)]'
xm
Zm1(
x)Basic
recurrence
formulasCorollary
2Zm
'mZm
/
x
Zm1Zm
'mZm
/
x
Zm1Corollary
12Zm
'
Zm1
Zm12mZm
/
x
Zm1
Zm1Proof
of
the
recurrence
formula
22k
mx(1)kk
0
k!(k
m
1)Jm
(
x)
21mm(
x2k
)'2k
mk
0
k!(k
m
1)(1)k[J
(
x)
/
x
]'
212k
12k
mxk
1
k!(k
m
1)2k(1)k
212k
12k
m1
(1)k
1xk
1
(k
1)!(k
m
1)l
k
1
lx/
x212l
1m
m2l
m1l
0
l!(l
m
1
1)(1)
Jm1(x)
/
xmApplications
of
the
recurrence
formulas[
x
m
Zm
]'
x
m
Zm1
Zk
xk
1[
x1k
Zk
1
]'[
x
m
Zm
]'
x
m
Zm1
Z0
x
1[
xZ1
]'
xn
Jmdx
xn
xm1[x1m
Jm1]'
dx
xn
Jm1
(n
m
1)
xn1Jm1dx
xn
J0dx
xn
x1[xJ1]'
dx
xn
J1
(n
1)
xn1J1dx
xn
J1
(n
1)xn1J0
(n
1)2
xn2
J0dx
xm
Jm1dx
xm
Jm
c
x3J0dx
x3J1
2x2
J0
4
xJ
0dx
xn
Jmdx
xn
Jm1
(n
m
1)
xn1Jm1dx
xJ0dx
xJ1
xn
J0dx
xn
J1
(n
1)xn1J0
(n
1)2
xn2
J0dxEx.1Ex.2
J1dx
J0Ex.4Ex.3
x2
J1dx
x2
J0
2
xJ
0dxEx.5
xJ
2dx
xJ1
2
J1dx
xm
Jm1dx
xm
Jm
cApplications
of
the
recurrence
formulasEigenvalue
problems
of
Bessel’s
Eq.Theresolution
of
rotational
symmetric
cylindrical
problemsGeneral
eigenvalue
problemsEigenvalue
problemsEigenvalues
andeigenfunctionsOrthogonality
and
completenessTypical
eigenvalue
problemsFiniteness
and
boundary
condition
of
the
1st
kindFiniteness
and
boundary
condition
of
the
2nd
kindBoundaryconditions
ofthe1st
kindut
a22uT
'a2k
2T
0u
T
(t)R()eimu
|t0
f
()eimnT
An
exp(
k
2a2t)R
Cn
Jm
(kn
)
Dn
Nm
(kn
)n1imu
Tn
(t)Rn
()en1n
nA
R
()f
()
(R'
)'
m2
R
k
2
R
0The
resolution
of
rotationalsymmetric
cylindrical
problemGeneral
eigenvalueproblemEigenvalue
problems:S
L
type
boundary
conditionsx2
y"
xy'm2
y
x2
y
0,
0
x
kb2mR
k
2
R
0(R')'Sturm
Liouvi
le
type
boundary
conditionsLet x
=
k
ρ,
y(x)=
R(ρ),
then
wehave:Eigenvalues
and
eigenfunctionsT eral
solution
of
the
universe
eq.
isy(
x)
AJ
m
(
x)
BNm
(
x)Fromboundary
conditions,
weget0nk0
(m)
0kn0
(m)
/
b
0The
eigenfunctions
areRn
()
yn
(x)
Cn
Jm
(
(m)
/
b)
Dn
Nm
(
(m)
/
b),
n
0,1,2,3,n
nOrthogonality
and
completeness0nbRn
(
)Pl
(
)dx
n,l
(N
m
)2NormOrthogonalitynbnR2
(
)d0m
2(N
)
Completenessn
nf
R
()n1f
()
Teralized
Fourier
coefficients
arenbnnf
(
)R
(
)d
1
0(
N
m
)2f
Finiteness
andboundaryconditionof
the
1st
kindTheeigenvalue
problem
isnTheeigenvalues
and
eigenfunctions
arekn
x(m)
/
b,
x(m)
is
the
nth
positive
zero
of
J
(
x)n
n
mRn
(
)
yn
(
x)
Jm
(
x(m)
/
b),
n
1,2,3,2mR
|
b
0R
k
2
R
0,
b(R'
)'The
orthogonality
and
norm
:20nb(
x(m)
)n
m1
n(N
m
)2
1
b2
J
2Rn
(
)Pl
(
)dx
n,l
(N
m
)2bnnf
(
)Rn
(
)d
1
0(N
m
)2f
f
J
(x(m)n
n
n
m
n
/
b)
n1
n1f R
()
f
()
Finiteness
andboundaryconditionof
the
1st
kindCompleteness
:Fourier’s
expansion
coefficients:n
mn
n(
x)xdxf
(
x
/
k
)Jk
(N
)1knb02
m
2
mnn(
x)xdxx(
m
)0f
(bx
/
x(m)
)Jb2(
x(m)
)2
(N
m
)2n
nFiniteness
andboundaryconditionof
the
1st
kindnbnn
1
0(
N
m
)2
(
c)R
(
)
df
f
J
(x(m)n
m
nn
n
/
b)
n1
n1f
R
()
(
c)
1cR
(c)n(N
m
)2nEx.
1:Expand
f
=
δ(ρ-c)in
[0,b]in
ageneralized
Fourierseries
of
the
Bessel
functions
Jm.2(m)nm1
b2
J
2
(x(m)
)/
b)cJ
(cxm1
nnmbnn
R
(
)
d10(
N
m
)2f
f
J
(x(m)n
m
nn
nm
/
b)
n1
n1f
R
()
mnxm
J
(
x)xdxx(
m
)0bm2(
x(m)
)m2
(N
m
)2n
nnx(m)
J2bm(
x(m)
)m1
n0(
m
)nxx
J
(
x)m1m1bm2(
x(m)
)m2
(N
m
)2n
nnx
x(m)
/
bFiniteness
and
boundary
condition
of
the
1st
kindEx.
2:Expand
f
=
ρm
in
[0,b]
in
a
generalized
Fourier
seriesoftheBessel
functions
Jm.(0)2n
0
nn
nf
J
(x
/
b)n1n1f
R
()
dnbnn
R
(
)
1
20(
N
0
)2f
n00x3J
(
x)dxb4(
x(0)
)4
(N
0
)2n
nx(
0)1
002132(
0)nxn
1
nx
J(
x(0)
)4
1
b2
J
2
(
x(0)
)b4
4xJ
2x
J
x3J0dx
x3J1
2x2
J0
4xJ1(0)
3
(0)
(0)(0)
4
2
(0)n1
nn(
x
)
J
(
x
)2b2[(
x
)
4xn
]J1(
xn
)Finiteness
and
boundary
condition
of
the
1st
kindEx.3:Expand
f
=
ρ2
in
[0,b]
in
a
generalized
Fourier
seriesoftheBessel
functions
J0.Finiteness
and
boundary
condition
of
the
2nd
kindThe
eigenvalue
problem
isThe
eigenvalues
and
eigenfunctions
are0(1)0(0)0(0)
xy
(
x)
J
(y
(
x)
J
(J
'
(
x)
0,
n
n
0
n(m)m
nn
nmR
(
)
R
(
)
kn
(m)
/
b,
where
(m)
is
the
nth positive
root
ofn
n
/
b),
n
0,1,2,3,;
/
b),
n
1,2,3,;
m
02mR'|
b
0R
k
2
R
0,
b(R'
)'The
orthogonality
and
norm
:2200
nnm
nn
nnb(
N
0
)2
1
b2
/
J
2
(
(0)
)(
N
m
)2
1
b2
[1
(m
/
(m)
)2
]/
J
2
(
(m)
)Rn
(
)Pl
(
)d
n,l
(
N
m
)2Finiteness
and
boundary
condition
of
the
2nd
kindnbnn
1
0(
N
m
)2
(
c)R
(
)
df
(1)n
0
nn
nf
J
(x
/
b)
n0
n0f
R
()
(
c)
1cR
(c)n(N
m
)2n200
n(1)n1
b2
J
2
(
x(1)
)/
b)cJ
(cx
(0)
x(1)n
n
J
0
'
(
x)
J1(
x)Ex.
1:Expand
f
=
δ(ρ-c) in
[0,b]inageneralized
Fourierseries
of
the
Bessel
functions
J0.nbnn
1
0(
N
0
)21
R
(
)
df
(1)n
0
nn
nf
J
(x
/
b)
n0
n0f
R
()
1
nn
nxJ
(
x)dx00b2(
x(1)
)2
(N
0
)2x(1)
0(1)xxJ1(
x)0n(
x(1)
)2
(N
0
)2n
nb2nx
x(1)
/
b
1b
1
00(
N
0
)2001
R
(
)
df
b10021
b2
J
2
(0)11dFiniteness
and
boundary
condition
of
the
2nd
kindEx.2:Expand
f
=1 in
[0,b]in
ageneralized
Fourierseries
of
the
Bessel
functions
J0.Boundary
conditions
of
the
1st
kindThe
eigenvalue
problem
isBy
boundary
conditions,
one
gets
BmJm
(ka)
Nm
(ka)
A
0Jm
(kb)
N
(kb)2mR
|
a
R
|
b
0R
k
2
R
0,
a
b(R'
)'R(
)
AJ
m
(k
)
BNm
(k
)T eral
solution
isThe
condition
ofnon-zero
solution
isJm
(ka)
Nm
(ka)
0Jm
(kb)
Nm
(kb)Rotational
symmetricproblemsAxial
symmetric
problems
(the
case
of
m
=0)Heat
problemWave
problemSteady
problemRotational
symmetric
problemsHeat
problemWave
problemSteady
problemAxial
symmetric
heat
problemsbnn(b
)J
(k
)d
1
0
n2
20(N
0
)2根據(jù)完備性:A
ut
a22u,
b定解問題為:
2
2u
|
b
0,
u
|t0
f
b
定解問題有軸對稱性,相應的半通解為u
n1
An
exp(
a
kn
t)[Cn
J0
(kn
)
Dn
N0
(kn
)]
2
2u(0,t)有界,u(b,t)
0,半通解化為u
n1
An
exp(
a
kn
t)J0
(kn
),
kn
xn
/
b
2
2
(0)由初始條件得:b
n1
An
J0
(kn
)2
2
Example
1半徑為b的無限長圓柱體,柱面上溫度為零,初始溫度分布為
f=b2
–ρ2,確定柱內溫度
u
的變化。Solution:以圓柱體的對稱軸為
z
軸,建立柱坐標。Axial
symmetric
heat
problemsA
Jbnn(k
)d
1
0
n20(
N
0
)2根據(jù)完備性:A
ut
a22u,
b定解問題為:
2u
|
b
0,
u
|t0
f
A定解問題有軸對稱性,相應的半通解為u
n0
An
exp(
a
kn
t)[Cn
J
0
(kn
)
Dn
N0
(kn
)]
2
2u(0,t)有界,u
(b,t)
0,半通解化為u
n0
An
exp(
a
kn
t)J
0
(kn
),
kn
xn
/
b
2
2
(1)由初始條件得:A
n0
An
J0
(kn
)2
Example
2半徑為b的無限長圓柱體,柱面上絕熱,初始溫度分布為
f=
Aρ2
,確定柱內溫度
u
的變化。Solution:以圓柱體的對稱軸為
z
軸,建立柱坐標。Axial
symmetric
wave
problems
bn(b
)J
(k
)d
1
0
n2
20(N
0
)2根據(jù)完備性:Bn
0,An
utt
a22u,
b定解問題為:
2
2u
|
b
0,
u
|t0
b
,
ut
|t0
0定解問題有軸對稱性,相應的半通解為u
(
A
cos
ak
t
B
sin
ak
t)[C
J
(k
)
D
N
(k
)]n1
n
n
n
n
n
0
n
n
0
nu(0,t)有界,u(b,t)
0,半通解化為u
n1
(
An
cos
aknt
Bn
sin
aknt)J
0
(kn
),
kn
xn
/
b
(0)b
n1
An
J
0
(kn
)
2
2
由初始條件得:
0
n1
Bn
akn
J
0
(kn
)Example
3半徑為b的圓形膜,邊緣固定,初始形狀是旋轉拋物面f=b2
–ρ2,初始速度為零,求膜的振動情況。Solution:以圓形膜的中心為原點,建立極坐標。Axial
symmetric
wave
problems0
n1n
n
0
nn1n
0
nB
ak
J
(k
)
(
c)
A
J
(k
)由初始條件得:bn
n
(
c)J
(k
)d
1
0
n0ak
(N
0
)2根據(jù)完備性:An
0,Bn
utt
a22u,
bu
|
b
0,
u
|t
0
0,
ut
|t
0
(
c)定解問題為:n1u
(
An
cos
aknt
Bn
sin
aknt)[Cn
J0
(kn
)
Dn
N0
(kn
)]定解問題有軸對稱性,相應的半通解為(0)n1n
n
n
n
0
n
n
nu
(
A
cos
ak
t
B
sin
ak
t)J
(k
),
k
x
/
bu(0,t)有界,u(b,t)
0,半通解化為Example
4半徑為b的圓形膜,邊緣固定,初始位移為零,初始速度為
f=δ(ρ-c),求膜的振動情況。Solution:以圓形膜的中心為原點,建立極坐標。Axial
symmetric
steady
problemsbn
J
(k
)d
1
0
n20sinh
kn
L(N
0
)2n根據(jù)完備性:B
2u
|
b
0,
u
|z0
0,
u
|zL
定解問題為:定解問題有軸對稱性,相應的半通解為u
(
A
cosh
k
z
B
sinh
k
z)[C
J
(k
)
D
N
(k
)]n1
n
n
n
n
n
0
n
n
0
nu(0,z)有界,u(b,z)
0,半通解化為u
n1
(
An
cosh
kn
z
Bn
sinh
kn
z)J
0
(kn
),
kn
xn
/
b
(0)由下底條件得:0
A
J
(k
)
A
0n1
n
0
n
n由上底條件得:
n1
Bn
sinh(
kn
L)J
0
(kn
)2
Example
5半徑為b,高為L的圓柱體,下底和側面都保持零度,上底的溫度分布為ρ2,求柱內的穩(wěn)恒溫度分布。Solution:以圓柱體的軸為
z
軸,下底中心為原點,建立柱坐標。uzz
2u
0,
b,
0
z
LAxial
symmetric
steady
problemsn1n1nBn
sinh(
kn
L)J
0
(kn
)B
2
A
sinh(
kn
L)J
0
(kn
)A
由上下底條件得:nbn
1
0sinh
kn
L(N
0
)2nAJ
0
(kn
)d
,
B
根據(jù)完備性:A
2u
|
0,
u
|
B
,
u
|
A
b
z0
zL定解問題為:n1u
[
An
sinh
kn
z
Bn
sinh
kn
(L
z)][Cn
J0
(kn
)
Dn
N0
(kn
)]定解問題有軸對稱性,相應的半通解為(0)n10
n
n
n[
An
sinh
kn
z
Bn
sinh
kn
(L
z)]Ju
(k
),
k
x
/
bu(0,z)有界,u(b,z)
0,半通解化為Example
6半徑為b,高為L的圓柱體,側面電勢保持為零,上底的電勢為A,下底的電勢分布為Bρ2,求柱內的電勢分布。Solution:以圓柱體的軸為
z
軸,下底中心為原點,建立柱坐標。uzz
2u
0,
b,
0
z
LRotational
symmetric
heatproblemsn
1
nA
J
(k
)n1由初始條件得:A
bnnAJ
(k
)d
1
1
n0(
N
1
)2根據(jù)完備性:A
u
|
b
0,
u
|t
0
A
cosut
a22u,
b定解問題為:2
2n1n
n
n
1
n
n
1
nA
exp(
a
k
t)[C
J
(k
)
D
N
(k
)]cosu
定解問題有轉動對稱性,相應的半通解為(1)2
2n1n
n1
nn
nA
exp(
a
k
t)Ju
(k
)
cos
,
k
x
/
bu(0,t)有界,u(b,t)
0,半通解化為Example
7半徑為b的無限長圓柱體,柱面上溫度為零,初始溫度分布為
f=Aρcos
φ,確定柱內溫度
u
的變化。Solution:以圓柱體的對稱軸為
z
軸,建立柱坐標。Rotational
symmetric
wave
problemsd
bn
J
(k
)
1
2
n20(N
2
)2根據(jù)完備性:Bn
0,An
utt
a22u,
b定解問題為:
2
2u
|
b
0,
u
|t0
(b
)sin
2
,
ut
|t0
0定解問題有轉動對稱性,相應的半通解為u
(
A
cos
ak
t
B
sin
ak
t)[C
J
(k
)
D
N
(k
)]sin
2n1
n
n
n
n
n
2
n
n
2
nu(0,t)有界,u(b,t)
0,半通解化為u
n1
(
An
cos
aknt
Bn
sin
aknt)J
2
(kn
)
sin
2
,
kn
xn
/
b
(2)
n1
An
J
2
(kn
)
2
由初始條件得:
0
n1
Bn
akn
J
2
(kn
)Example
8半徑為b的圓形膜,邊緣固定,初始形狀是
ρ2sin2φ,初始速度為零,求膜的振動情況。Solution:以圓形膜的中心為原點,建立極坐標。Rotational
symmetric
steady
problemsbAJ
(k
)d
1
1
n0sinh
kn
L(N
1
)2n根據(jù)完備性:An
0,Bn
uzz
2u
0,
b,
0
z
L定解問題為:u
|
b
0,
u
|z0
A
sin
,
u
|zL
0定解問題有轉動對稱性,相應的半通解為u
[
A
sinh
k
z
B
sinh
k
(L
z)][C
J
(k
)
D
N
(k
)]sin
n1
n
n
n
n
n
1
n
n
1
nu(0,z)有界,u(b,z)
0,半通解化為u
n1[
An
sinh
kn
z
Bnsinh
kn
(L
z)]J1(kn
)
sin
,
kn
xn
/
b
(1)
0
n1
An
sinh(
kn
L)J1(kn
)
由上下底條件得:
A
n1
Bn
sinh(
kn
L)J1(kn
)Example
9半徑為b,高為L的圓柱體,側面和上底保持零度,下底的溫度分布為Aρsinφ,求柱內的穩(wěn)恒溫度分布。Solution:以圓柱體的軸為
z
軸,下底中心為原點,建立柱坐標。General
Cylindrical
ProblemsProgramer
,
resolve
the
conditions
into
Fourierserieswith
respect
to
the
variable
.Then,
find
the
symmetric
cylindrical
solutions
foreach
condition
with
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB36T-高速公路機電系統(tǒng)維護技術規(guī)范第1部分:技術要求編制說明
- 模具設計師資格考試臨考準備試題與答案
- 備考2014年目標達成試題與答案
- 復雜形狀的模具設計試題及答案
- 2024年游泳救生員考試經驗分享及試題答案
- 2023年8月全國事業(yè)單位考試聯(lián)考B類綜合應用能力真題試題試卷答案解析
- 2024籃球裁判員考試透明度與試題及答案
- 創(chuàng)新模具設計方案考試試題及答案
- 2024年游泳救生員考試核心知識模塊的試題及答案
- 關于成立肉羊產業(yè)鏈公司可行性研究報告(模板)
- 2025年冀教版七年級英語下冊教學工作計劃
- 拍賣行業(yè)區(qū)塊鏈技術與藝術品鑒定方案
- 中學升學策略講座模板
- 公對公勞務合同范例
- 九年級化學專題復習-化學用語1-名師公開課獲獎課件百校聯(lián)賽一等獎課件
- 腦血管支架置入術后護理
- 中小學教師家校社協(xié)同育人能力的區(qū)域調研與思考
- 小學三年級下冊數(shù)學(蘇教版)和差倍問題專項訓練
- 掛靠裝飾公司合同模板
- 第三單元 認識立體圖形(單元測試)-2024-2025學年一年級上冊數(shù)學人教版
- 金屬非金屬地下礦山安全生產標準化定級評分標準(2023版)
評論
0/150
提交評論