江西省撫州市崇仁縣2023學(xué)年十校聯(lián)考最后數(shù)學(xué)試題含解析_第1頁(yè)
江西省撫州市崇仁縣2023學(xué)年十校聯(lián)考最后數(shù)學(xué)試題含解析_第2頁(yè)
江西省撫州市崇仁縣2023學(xué)年十校聯(lián)考最后數(shù)學(xué)試題含解析_第3頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江西省撫州市崇仁縣2023學(xué)年十校聯(lián)考最后數(shù)學(xué)測(cè)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在測(cè)試卷卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在測(cè)試卷卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿(mǎn)分30分)1.把拋物線(xiàn)y=﹣2x2向上平移1個(gè)單位,再向右平移1個(gè)單位,得到的拋物線(xiàn)是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣12.下列四個(gè)數(shù)表示在數(shù)軸上,它們對(duì)應(yīng)的點(diǎn)中,離原點(diǎn)最遠(yuǎn)的是()A.﹣2 B.﹣1 C.0 D.13.如圖,已知AB和CD是⊙O的兩條等弦.OM⊥AB,ON⊥CD,垂足分別為點(diǎn)M、N,BA、DC的延長(zhǎng)線(xiàn)交于點(diǎn)P,聯(lián)結(jié)OP.下列四個(gè)說(shuō)法中:①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正確的個(gè)數(shù)是()A.1 B.2 C.3 D.44.我國(guó)作家莫言獲得諾貝爾文學(xué)獎(jiǎng)之后,他的代表作品《蛙》的銷(xiāo)售量就比獲獎(jiǎng)之前增長(zhǎng)了180倍,達(dá)到2100000冊(cè).把2100000用科學(xué)記數(shù)法表示為()A.0.21×108 B.21×106 C.2.1×107 D.2.1×1065.某自行車(chē)廠(chǎng)準(zhǔn)備生產(chǎn)共享單車(chē)4000輛,在生產(chǎn)完1600輛后,采用了新技術(shù),使得工作效率比原來(lái)提高了20%,結(jié)果共用了18天完成任務(wù),若設(shè)原來(lái)每天生產(chǎn)自行車(chē)x輛,則根據(jù)題意可列方程為()A.+=18 B.=18C.+=18 D.=186.如圖,在邊長(zhǎng)為2的正方形ABCD中剪去一個(gè)邊長(zhǎng)為1的小正方形CEFG,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿A→D→E→F→G→B的路線(xiàn)繞多邊形的邊勻速運(yùn)動(dòng)到點(diǎn)B時(shí)停止(不含點(diǎn)A和點(diǎn)B),則△ABP的面積S隨著時(shí)間t變化的函數(shù)圖象大致是()A. B. C. D.7.如圖是一個(gè)由5個(gè)相同的正方體組成的立體圖形,它的主視圖是()A. B. C. D.8.計(jì)算x﹣2y﹣(2x+y)的結(jié)果為()A.3x﹣y B.3x﹣3y C.﹣x﹣3y D.﹣x﹣y9.如圖,中,,且,設(shè)直線(xiàn)截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關(guān)系的圖象為下列選項(xiàng)中的A. B. C. D.10.運(yùn)用乘法公式計(jì)算(3﹣a)(a+3)的結(jié)果是()A.a(chǎn)2﹣6a+9 B.a(chǎn)2﹣9 C.9﹣a2 D.a(chǎn)2﹣3a+9二、填空題(共7小題,每小題3分,滿(mǎn)分21分)11.為了了解貫徹執(zhí)行國(guó)家提倡的“陽(yáng)光體育運(yùn)動(dòng)”的實(shí)施情況,將某班50名同學(xué)一周的體育鍛煉情況繪制成了如圖所示的條形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖提供的數(shù)據(jù),該班50名同學(xué)一周參加體育鍛煉時(shí)間的中位數(shù)與眾數(shù)之和為_(kāi)____.12.某書(shū)店把一本新書(shū)按標(biāo)價(jià)的九折出售,仍可獲利20%,若該書(shū)的進(jìn)價(jià)為21元,則標(biāo)價(jià)為_(kāi)__________元.13.如圖,PA,PB是⊙O是切線(xiàn),A,B為切點(diǎn),AC是⊙O的直徑,若∠P=46°,則∠BAC=▲度.14.如圖,反比例函數(shù)y=(x<0)的圖象經(jīng)過(guò)點(diǎn)A(﹣2,2),過(guò)點(diǎn)A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點(diǎn)P(0,t),過(guò)點(diǎn)P作直線(xiàn)OA的垂線(xiàn)l,以直線(xiàn)l為對(duì)稱(chēng)軸,點(diǎn)B經(jīng)軸對(duì)稱(chēng)變換得到的點(diǎn)B'在此反比例函數(shù)的圖象上,則t的值是()A.1+ B.4+ C.4 D.-1+15.如圖,AB是⊙O的切線(xiàn),B為切點(diǎn),AC經(jīng)過(guò)點(diǎn)O,與⊙O分別相交于點(diǎn)D,C,若∠ACB=30°,AB=,則陰影部分的面積是___.16.若一個(gè)扇形的圓心角為60°,面積為6π,則這個(gè)扇形的半徑為_(kāi)_________.17.已知雙曲線(xiàn)經(jīng)過(guò)點(diǎn)(-1,2),那么k的值等于_______.三、解答題(共7小題,滿(mǎn)分69分)18.(10分)如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=x2+mx+n經(jīng)過(guò)點(diǎn)A(3,0)、B(0,-3),點(diǎn)P是直線(xiàn)AB上的動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線(xiàn)交拋物線(xiàn)于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為t.分別求出直線(xiàn)AB和這條拋物線(xiàn)的解析式.若點(diǎn)P在第四象限,連接AM、BM,當(dāng)線(xiàn)段PM最長(zhǎng)時(shí),求△ABM的面積.是否存在這樣的點(diǎn)P,使得以點(diǎn)P、M、B、O為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.19.(5分)如圖,拋物線(xiàn)經(jīng)過(guò)點(diǎn)A(﹣2,0),點(diǎn)B(0,4).(1)求這條拋物線(xiàn)的表達(dá)式;(2)P是拋物線(xiàn)對(duì)稱(chēng)軸上的點(diǎn),聯(lián)結(jié)AB、PB,如果∠PBO=∠BAO,求點(diǎn)P的坐標(biāo);(3)將拋物線(xiàn)沿y軸向下平移m個(gè)單位,所得新拋物線(xiàn)與y軸交于點(diǎn)D,過(guò)點(diǎn)D作DE∥x軸交新拋物線(xiàn)于點(diǎn)E,射線(xiàn)EO交新拋物線(xiàn)于點(diǎn)F,如果EO=2OF,求m的值.20.(8分)如圖,沿AC方向開(kāi)山修路.為了加快施工進(jìn)度,要在小山的另一邊同時(shí)施工,從AC上的一點(diǎn)B取∠ABD=120°,BD=520m,∠D=30°.那么另一邊開(kāi)挖點(diǎn)E離D多遠(yuǎn)正好使A,C,E三點(diǎn)在一直線(xiàn)上(取1.732,結(jié)果取整數(shù))?21.(10分)如圖,拋物線(xiàn)與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱(chēng)軸為=–1,P為拋物線(xiàn)上第二象限的一個(gè)動(dòng)點(diǎn).(1)求拋物線(xiàn)的解析式并寫(xiě)出其頂點(diǎn)坐標(biāo);(2)當(dāng)點(diǎn)P的縱坐標(biāo)為2時(shí),求點(diǎn)P的橫坐標(biāo);(3)當(dāng)點(diǎn)P在運(yùn)動(dòng)過(guò)程中,求四邊形PABC面積最大時(shí)的值及此時(shí)點(diǎn)P的坐標(biāo).22.(10分)如圖,二次函數(shù)的圖象與x軸交于A(yíng)、B兩點(diǎn),與y軸交于點(diǎn)C,已知點(diǎn)A(﹣4,0).求拋物線(xiàn)與直線(xiàn)AC的函數(shù)解析式;若點(diǎn)D(m,n)是拋物線(xiàn)在第二象限的部分上的一動(dòng)點(diǎn),四邊形OCDA的面積為S,求S關(guān)于m的函數(shù)關(guān)系式;若點(diǎn)E為拋物線(xiàn)上任意一點(diǎn),點(diǎn)F為x軸上任意一點(diǎn),當(dāng)以A、C、E、F為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)求出滿(mǎn)足條件的所有點(diǎn)E的坐標(biāo).23.(12分)如圖,在四邊形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求證:四邊形ABCD是平行四邊形;(2)若AB=3cm,BC=5cm,AE=AB,點(diǎn)P從B點(diǎn)出發(fā),以1cm/s的速度沿BC→CD→DA運(yùn)動(dòng)至A點(diǎn)停止,則從運(yùn)動(dòng)開(kāi)始經(jīng)過(guò)多少時(shí)間,△BEP為等腰三角形.24.(14分)已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度).(1)畫(huà)出△ABC向下平移4個(gè)單位長(zhǎng)度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是;(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫(huà)出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是;(3)△A2B2C2的面積是平方單位.

2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿(mǎn)分30分)1、B【答案解析】

∵函數(shù)y=-2x2的頂點(diǎn)為(0,0),∴向上平移1個(gè)單位,再向右平移1個(gè)單位的頂點(diǎn)為(1,1),∴將函數(shù)y=-2x2的圖象向上平移1個(gè)單位,再向右平移1個(gè)單位,得到拋物線(xiàn)的解析式為y=-2(x-1)2+1,故選B.【答案點(diǎn)睛】二次函數(shù)的平移不改變二次項(xiàng)的系數(shù);關(guān)鍵是根據(jù)上下平移改變頂點(diǎn)的縱坐標(biāo),左右平移改變頂點(diǎn)的橫坐標(biāo)得到新拋物線(xiàn)的頂點(diǎn).2、A【答案解析】

由于要求四個(gè)數(shù)的點(diǎn)中距離原點(diǎn)最遠(yuǎn)的點(diǎn),所以求這四個(gè)點(diǎn)對(duì)應(yīng)的實(shí)數(shù)絕對(duì)值即可求解.【題目詳解】∵|-1|=1,|-1|=1,∴|-1|>|-1|=1>0,∴四個(gè)數(shù)表示在數(shù)軸上,它們對(duì)應(yīng)的點(diǎn)中,離原點(diǎn)最遠(yuǎn)的是-1.故選A.【答案點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸的對(duì)應(yīng)關(guān)系,以及估算無(wú)理數(shù)大小的能力,也利用了數(shù)形結(jié)合的思想.3、D【答案解析】如圖連接OB、OD;∵AB=CD,∴=,故①正確∵OM⊥AB,ON⊥CD,∴AM=MB,CN=ND,∴BM=DN,∵OB=OD,∴Rt△OMB≌Rt△OND,∴OM=ON,故②正確,∵OP=OP,∴Rt△OPM≌Rt△OPN,∴PM=PN,∠OPB=∠OPD,故④正確,∵AM=CN,∴PA=PC,故③正確,故選D.4、D【答案解析】2100000=2.1×106.點(diǎn)睛:對(duì)于一個(gè)絕對(duì)值較大的數(shù),用科學(xué)記數(shù)法寫(xiě)成的形式,其中,n是比原整數(shù)位數(shù)少1的數(shù).5、B【答案解析】

根據(jù)前后的時(shí)間和是18天,可以列出方程.【題目詳解】若設(shè)原來(lái)每天生產(chǎn)自行車(chē)x輛,根據(jù)前后的時(shí)間和是18天,可以列出方程.故選B【答案點(diǎn)睛】本題考核知識(shí)點(diǎn):分式方程的應(yīng)用.解題關(guān)鍵點(diǎn):根據(jù)時(shí)間關(guān)系,列出分式方程.6、B【答案解析】解:當(dāng)點(diǎn)P在A(yíng)D上時(shí),△ABP的底AB不變,高增大,所以△ABP的面積S隨著時(shí)間t的增大而增大;當(dāng)點(diǎn)P在DE上時(shí),△ABP的底AB不變,高不變,所以△ABP的面積S不變;當(dāng)點(diǎn)P在EF上時(shí),△ABP的底AB不變,高減小,所以△ABP的面積S隨著時(shí)間t的減小而減??;當(dāng)點(diǎn)P在FG上時(shí),△ABP的底AB不變,高不變,所以△ABP的面積S不變;當(dāng)點(diǎn)P在GB上時(shí),△ABP的底AB不變,高減小,所以△ABP的面積S隨著時(shí)間t的減小而減??;故選B.7、A【答案解析】

根據(jù)從正面看得到的圖形是主視圖,可得答案.【題目詳解】解:從正面看第一層是三個(gè)小正方形,第二層中間有一個(gè)小正方形,

故選:A.【答案點(diǎn)睛】本題考查了簡(jiǎn)單組合體的三視圖,從正面看得到的圖形是主視圖.8、C【答案解析】

原式去括號(hào)合并同類(lèi)項(xiàng)即可得到結(jié)果.【題目詳解】原式,故選:C.【答案點(diǎn)睛】本題主要考查了整式的加減運(yùn)算,熟練掌握去括號(hào)及合并同類(lèi)項(xiàng)是解決本題的關(guān)鍵.9、D【答案解析】

Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行線(xiàn)的性質(zhì)得出∠OCD=∠A,即∠AOD=∠OCD=45°,進(jìn)而證明OD=CD=t;最后根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來(lái)選擇圖象.【題目詳解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S與t之間的函數(shù)關(guān)系的圖象應(yīng)為定義域?yàn)閇0,3],開(kāi)口向上的二次函數(shù)圖象;故選D.【答案點(diǎn)睛】本題主要考查的是二次函數(shù)解析式的求法及二次函數(shù)的圖象特征,解答本題的關(guān)鍵是根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來(lái)選擇圖象.10、C【答案解析】

根據(jù)平方差公式計(jì)算可得.【題目詳解】解:(3﹣a)(a+3)=32﹣a2=9﹣a2,故選C.【答案點(diǎn)睛】本題主要考查平方差公式,解題的關(guān)鍵是應(yīng)用平方差公式計(jì)算時(shí),應(yīng)注意以下幾個(gè)問(wèn)題:①左邊是兩個(gè)二項(xiàng)式相乘,并且這兩個(gè)二項(xiàng)式中有一項(xiàng)完全相同,另一項(xiàng)互為相反數(shù);②右邊是相同項(xiàng)的平方減去相反項(xiàng)的平方.二、填空題(共7小題,每小題3分,滿(mǎn)分21分)11、17【答案解析】∵8是出現(xiàn)次數(shù)最多的,∴眾數(shù)是8,∵這組數(shù)據(jù)從小到大的順序排列,處于中間位置的兩個(gè)數(shù)都是9,∴中位數(shù)是9,所以中位數(shù)與眾數(shù)之和為8+9=17.故答案為17小時(shí).12、28【答案解析】設(shè)標(biāo)價(jià)為x元,那么0.9x-21=21×20%,x=28.13、1.【答案解析】

由PA、PB是圓O的切線(xiàn),根據(jù)切線(xiàn)長(zhǎng)定理得到PA=PB,即三角形APB為等腰三角形,由頂角的度數(shù),利用三角形的內(nèi)角和定理求出底角的度數(shù),再由AP為圓O的切線(xiàn),得到OA與AP垂直,根據(jù)垂直的定義得到∠OAP為直角,再由∠OAP-∠PAB即可求出∠BAC的度數(shù)【題目詳解】∵PA,PB是⊙O是切線(xiàn),∴PA=PB.又∵∠P=46°,∴∠PAB=∠PBA=.又∵PA是⊙O是切線(xiàn),AO為半徑,∴OA⊥AP.∴∠OAP=90°.∴∠BAC=∠OAP﹣∠PAB=90°﹣67°=1°.故答案為:1【答案點(diǎn)睛】此題考查了切線(xiàn)的性質(zhì),切線(xiàn)長(zhǎng)定理,等腰三角形的性質(zhì),以及三角形的內(nèi)角和定理,熟練掌握定理及性質(zhì)是解本題的關(guān)鍵.14、A【答案解析】

根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征由A點(diǎn)坐標(biāo)為(-2,2)得到k=-4,即反比例函數(shù)解析式為y=-,且OB=AB=2,則可判斷△OAB為等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后軸對(duì)稱(chēng)的性質(zhì)得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y軸,則點(diǎn)B的坐標(biāo)可表示為(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到滿(mǎn)足條件的t的值.【題目詳解】如圖,∵點(diǎn)A坐標(biāo)為(-2,2),∴k=-2×2=-4,∴反比例函數(shù)解析式為y=-,∵OB=AB=2,∴△OAB為等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵點(diǎn)B和點(diǎn)B′關(guān)于直線(xiàn)l對(duì)稱(chēng),∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y軸,∴點(diǎn)B′的坐標(biāo)為(-,t),∵PB=PB′,∴t-2=|-|=,整理得t2-2t-4=0,解得t1=,t2=1-(不符合題意,舍去),∴t的值為.故選A.【答案點(diǎn)睛】本題是反比例函數(shù)的綜合題,解決本題要掌握反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、等腰直角三角形的性質(zhì)和軸對(duì)稱(chēng)的性質(zhì)及會(huì)用求根公式法解一元二次方程.15、﹣【答案解析】連接OB.∵AB是⊙O切線(xiàn),∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB=,∠A=30°,∴OB=1,∴S陰=S△ABO﹣S扇形OBD=×1×﹣=﹣.16、6【答案解析】設(shè)這個(gè)扇形的半徑為,根據(jù)題意可得:,解得:.故答案為.17、-1【答案解析】

分析:根據(jù)點(diǎn)在曲線(xiàn)上點(diǎn)的坐標(biāo)滿(mǎn)足方程的關(guān)系,將點(diǎn)(-1,2)代入,得:,解得:k=-1.三、解答題(共7小題,滿(mǎn)分69分)18、(1)拋物線(xiàn)的解析式是.直線(xiàn)AB的解析式是.(2).(3)P點(diǎn)的橫坐標(biāo)是或.【答案解析】

(1)分別利用待定系數(shù)法求兩函數(shù)的解析式:把A(3,0)B(0,﹣3)分別代入y=x2+mx+n與y=kx+b,得到關(guān)于m、n的兩個(gè)方程組,解方程組即可;(2)設(shè)點(diǎn)P的坐標(biāo)是(t,t﹣3),則M(t,t2﹣2t﹣3),用P點(diǎn)的縱坐標(biāo)減去M的縱坐標(biāo)得到PM的長(zhǎng),即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根據(jù)二次函數(shù)的最值得到當(dāng)t=﹣=時(shí),PM最長(zhǎng)為=,再利用三角形的面積公式利用S△ABM=S△BPM+S△APM計(jì)算即可;(3)由PM∥OB,根據(jù)平行四邊形的判定得到當(dāng)PM=OB時(shí),點(diǎn)P、M、B、O為頂點(diǎn)的四邊形為平行四邊形,然后討論:當(dāng)P在第四象限:PM=OB=3,PM最長(zhǎng)時(shí)只有,所以不可能;當(dāng)P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;當(dāng)P在第三象限:PM=OB=3,t2﹣3t=3,分別解一元二次方程即可得到滿(mǎn)足條件的t的值.【題目詳解】解:(1)把A(3,0)B(0,-3)代入,得解得所以?huà)佄锞€(xiàn)的解析式是.設(shè)直線(xiàn)AB的解析式是,把A(3,0)B(0,)代入,得解得所以直線(xiàn)AB的解析式是.(2)設(shè)點(diǎn)P的坐標(biāo)是(),則M(,),因?yàn)樵诘谒南笙蓿訮M=,當(dāng)PM最長(zhǎng)時(shí),此時(shí)==.(3)若存在,則可能是:①P在第四象限:平行四邊形OBMP,PM=OB=3,PM最長(zhǎng)時(shí),所以不可能.②P在第一象限平行四邊形OBPM:PM=OB=3,,解得,(舍去),所以P點(diǎn)的橫坐標(biāo)是.③P在第三象限平行四邊形OBPM:PM=OB=3,,解得(舍去),①,所以P點(diǎn)的橫坐標(biāo)是.所以P點(diǎn)的橫坐標(biāo)是或.19、(1);(2)P(1,);(3)3或5.【答案解析】

(1)將點(diǎn)A、B代入拋物線(xiàn),用待定系數(shù)法求出解析式.(2)對(duì)稱(chēng)軸為直線(xiàn)x=1,過(guò)點(diǎn)P作PG⊥y軸,垂足為G,由∠PBO=∠BAO,得tan∠PBO=tan∠BAO,即,可求出P的坐標(biāo).(3)新拋物線(xiàn)的表達(dá)式為,由題意可得DE=2,過(guò)點(diǎn)F作FH⊥y軸,垂足為H,∵DE∥FH,EO=2OF,∴,∴FH=1.然后分情況討論點(diǎn)D在y軸的正半軸上和在y軸的負(fù)半軸上,可求得m的值為3或5.【題目詳解】解:(1)∵拋物線(xiàn)經(jīng)過(guò)點(diǎn)A(﹣2,0),點(diǎn)B(0,4)∴,解得,∴拋物線(xiàn)解析式為,(2),∴對(duì)稱(chēng)軸為直線(xiàn)x=1,過(guò)點(diǎn)P作PG⊥y軸,垂足為G,∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,∴,∴,∴,,∴P(1,),(3)設(shè)新拋物線(xiàn)的表達(dá)式為則,,DE=2過(guò)點(diǎn)F作FH⊥y軸,垂足為H,∵DE∥FH,EO=2OF∴,∴FH=1.點(diǎn)D在y軸的正半軸上,則,∴,∴,∴m=3,點(diǎn)D在y軸的負(fù)半軸上,則,∴,∴,∴m=5,∴綜上所述m的值為3或5.【答案點(diǎn)睛】本題是二次函數(shù)和相似三角形的綜合題目,整體難度不大,但是非常巧妙,學(xué)會(huì)靈活運(yùn)用是關(guān)鍵.20、450m.【答案解析】

若要使A、C、E三點(diǎn)共線(xiàn),則三角形BDE是以∠E為直角的三角形,利用三角函數(shù)即可解得DE的長(zhǎng).【題目詳解】解:,,,在中,,,,.答:另一邊開(kāi)挖點(diǎn)離,正好使,,三點(diǎn)在一直線(xiàn)上.【答案點(diǎn)睛】本題考查的知識(shí)點(diǎn)是解直角三角形的應(yīng)用和勾股定理的運(yùn)用,解題關(guān)鍵是是熟記含30°的直角三角形的性質(zhì).21、(1)二次函數(shù)的解析式為,頂點(diǎn)坐標(biāo)為(–1,4);(2)點(diǎn)P橫坐標(biāo)為––1;(3)當(dāng)時(shí),四邊形PABC的面積有最大值,點(diǎn)P().【答案解析】測(cè)試卷分析:(1)已知拋物線(xiàn)與軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱(chēng)軸為=﹣1,由此列出方程組,解方程組求得a、b、c的值,即可得拋物線(xiàn)的解析式,把解析式化為頂點(diǎn)式,直接寫(xiě)出頂點(diǎn)坐標(biāo)即可;(2)把y=2代入解析式,解方程求得x的值,即可得點(diǎn)P的橫坐標(biāo),從而求得點(diǎn)P的坐標(biāo);(3)設(shè)點(diǎn)P(,),則,根據(jù)得出四邊形PABC與x之間的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)求得x的值,即可求得點(diǎn)P的坐標(biāo).測(cè)試卷解析:(1)∵拋物線(xiàn)與軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱(chēng)軸為=﹣1,∴,解得:,∴二次函數(shù)的解析式為=,∴頂點(diǎn)坐標(biāo)為(﹣1,4)(2)設(shè)點(diǎn)P(,2),即=2,解得=﹣1(舍去)或=﹣﹣1,∴點(diǎn)P(﹣﹣1,2).(3)設(shè)點(diǎn)P(,),則,,∴=∴當(dāng)時(shí),四邊形PABC的面積有最大值.所以點(diǎn)P().點(diǎn)睛:本題是二次函數(shù)綜合題,主要考查學(xué)生對(duì)二次函數(shù)解決動(dòng)點(diǎn)問(wèn)題綜合運(yùn)用能力,動(dòng)點(diǎn)問(wèn)題為中考??碱}型,注意培養(yǎng)數(shù)形結(jié)合思想,培養(yǎng)綜合分析歸納能力,解決這類(lèi)問(wèn)題要會(huì)建立二次函數(shù)模型,利用二次函數(shù)的性質(zhì)解決問(wèn)題.22、(1)(1)S=﹣m1﹣4m+4(﹣4<m<0)(3)(﹣3,1)、(,﹣1)、(,﹣1)【答案解析】

(1)把點(diǎn)A的坐標(biāo)代入拋物線(xiàn)的解析式,就可求得拋物線(xiàn)的解析式,根據(jù)A,C兩點(diǎn)的坐標(biāo),可求得直線(xiàn)AC的函數(shù)解析式;(1)先過(guò)點(diǎn)D作DH⊥x軸于點(diǎn)H,運(yùn)用割補(bǔ)法即可得到:四邊形OCDA的面積=△ADH的面積+四邊形OCDH的面積,據(jù)此列式計(jì)算化簡(jiǎn)就可求得S關(guān)于m的函數(shù)關(guān)系;(3)由于A(yíng)C確定,可分AC是平行四邊形的邊和對(duì)角線(xiàn)兩種情況討論,得到點(diǎn)E與點(diǎn)C的縱坐標(biāo)之間的關(guān)系,然后代入拋物線(xiàn)的解析式,就可得到滿(mǎn)足條件的所有點(diǎn)E的坐標(biāo).【題目詳解】(1)∵A(﹣4,0)在二次函數(shù)y=ax1﹣x+1(a≠0)的圖象上,∴0=16a+6+1,解得a=﹣,∴拋物線(xiàn)的函數(shù)解析式為y=﹣x1﹣x+1;∴點(diǎn)C的坐標(biāo)為(0,1),設(shè)直線(xiàn)AC的解析式為y=kx+b,則,解得,∴直線(xiàn)AC的函數(shù)解析式為:;(1)∵點(diǎn)D(m,n)是拋物線(xiàn)在第二象限的部分上的一動(dòng)點(diǎn),∴D(m,﹣m1﹣m+1),過(guò)點(diǎn)D作DH⊥x軸于點(diǎn)H,則DH=﹣m1﹣m+1,AH=m+4,HO=﹣m,∵四邊形OCDA的面積=△ADH的面積+四邊形OCDH的面積,∴S=(m+4)×(﹣m1﹣m+1)+(﹣m1﹣m+1+1)×(﹣m),化簡(jiǎn),得S=﹣m1﹣4m+4(﹣4<m<0);(3)①若AC為平行四邊形的一邊,則C、E到AF的距離相等,∴|yE|=|yC|=1,∴yE=±1.當(dāng)yE=1時(shí),解方程﹣x1﹣x+1=1得,x1=0,x1=﹣3,∴點(diǎn)E的坐標(biāo)為(﹣3,1);當(dāng)yE=﹣1時(shí),解方程﹣x1﹣x+1=﹣1得,x1=,x1=,∴點(diǎn)E的坐標(biāo)為(,﹣1)或(,﹣1);②若AC為平行四邊形的一條對(duì)角線(xiàn),則CE∥AF,∴yE=yC=1,∴點(diǎn)E的坐標(biāo)為(﹣3,1).綜上所述,滿(mǎn)足條件的點(diǎn)E的坐標(biāo)為(﹣3,1)、(,﹣1)、(,﹣1).23、(1)證明見(jiàn)解析;(2)從運(yùn)動(dòng)開(kāi)始經(jīng)過(guò)2s或s或s或s時(shí),△BEP為等腰三角形.【答案解析】

(1)根據(jù)內(nèi)錯(cuò)角相等,得到兩邊平行,然后再根據(jù)三角形內(nèi)角和等于180度得到另一對(duì)內(nèi)錯(cuò)角相等,從而證得原四邊形是平

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論