天津七中2023屆高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第1頁
天津七中2023屆高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第2頁
天津七中2023屆高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第3頁
天津七中2023屆高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第4頁
天津七中2023屆高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.的值為()A. B.1C. D.22.已知函數(shù),則()A.-1 B.2C.1 D.53.若一元二次不等式的解集為,則的值為()A. B.0C. D.24.已知函數(shù),記,,,則,,的大小關(guān)系為()A. B.C. D.5.用二分法求方程的近似解,求得的部分函數(shù)值數(shù)據(jù)如下表所示:121.51.6251.751.8751.8125-63-2.625-1.459-0.141.34180.5793則當(dāng)精確度為0.1時,方程的近似解可取為A. B.C. D.6.已知一扇形的周長為28,則該扇形面積的最大值為()A.36 B.42C.49 D.567.已知向量和的夾角為,且,則A. B.C. D.8.函數(shù)部分圖象如圖所示,則下列結(jié)論錯誤的是()A.頻率為 B.周期為C.振幅為2 D.初相為9.已知,,則的值約為(精確到)()A. B.C. D.10.函數(shù)與的圖象交于兩點,為坐標原點,則的面積為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.給出下列命題:①存在實數(shù),使;②函數(shù)是偶函數(shù);③若是第一象限角,且,則;④是函數(shù)的一條對稱軸方程以上命題是真命題的是_______(填寫序號)12.在中,已知,則______.13.函數(shù)f(x)為奇函數(shù),且x>0時,f(x)=+1,則當(dāng)x<0時,f(x)=________.14.已知為第二象限角,且,則_____15.將函數(shù)的圖象先向下平移1個單位長度,在作關(guān)于直線對稱的圖象,得到函數(shù),則__________.16.如圖,圓錐的底面圓直徑AB為2,母線長SA為4,若小蟲P從點A開始繞著圓錐表面爬行一圈到SA的中點C,則小蟲爬行的最短距離為________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的圖象關(guān)于直線對稱,若實數(shù)滿足時,的最小值為1(1)求的解析式;(2)將函數(shù)的圖象向左平移個單位后,得到的圖象,求的單調(diào)遞減區(qū)間18.(1)已知,求的值;(2)已知,,求的值.19.已知函數(shù)f(x)的圖像關(guān)于原點對稱,當(dāng)時,.(1)求函數(shù)f(x)的解析式;(2)求函數(shù)f(x)的單調(diào)區(qū)間.20.食品安全問題越來越引起人們的重視,農(nóng)藥、化肥的濫用給人民群眾的健康帶來了一定的危害.為了給消費者帶來放心的蔬菜,某農(nóng)村合作社每年投入資金萬元,搭建甲、乙兩個無公害蔬菜大棚,每個大棚至少要投入資金萬元,其中甲大棚種西紅柿,乙大棚種黃瓜.根據(jù)以往的種菜經(jīng)驗,發(fā)現(xiàn)種西紅柿的年收入、種黃瓜的年收入與各自的資金投入(單位:萬元)滿足,.設(shè)甲大棚的資金投入為(單位:萬元),每年兩個大棚的總收入為(單位:萬元)(1)求的值;(2)試問如何安排甲、乙兩個大棚的資金投入,才能使總收入最大21.(1)已知:,若是第四象限角,求,的值;(2)已知,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】根據(jù)正切的差角公式逆用可得答案【詳解】,故選:B2、A【解析】求分段函數(shù)的函數(shù)值,將自變量代入相應(yīng)的函數(shù)解析式可得結(jié)果.【詳解】∵在這個范圍之內(nèi),∴故選:A.【點睛】本題考查分段函數(shù)求函數(shù)值的問題,考查運算求解能力,是簡單題.3、C【解析】由不等式與方程的關(guān)系轉(zhuǎn)化為,從而解得【詳解】解:∵不等式kx2﹣2x+k<0的解集為{x|x≠m},∴,解得,k=﹣1,m=﹣1,故m+k=﹣2,故選:C4、C【解析】根據(jù)題意得在上單調(diào)遞增,,進而根據(jù)函數(shù)的單調(diào)性比較大小即可.【詳解】解:因為函數(shù)定義域為,,故函數(shù)為奇函數(shù),因為在上單調(diào)遞增,在上單調(diào)遞減,所以在上單調(diào)遞增,因為,所以,所以,故選:C.5、C【解析】利用零點存在定理和精確度可判斷出方程的近似解.【詳解】根據(jù)表中數(shù)據(jù)可知,,由精確度為可知,,故方程的一個近似解為,選C.【點睛】不可解方程的近似解應(yīng)該通過零點存在定理來尋找,零點的尋找依據(jù)二分法(即每次取區(qū)間的中點,把零點位置精確到原來區(qū)間的一半內(nèi)),最后依據(jù)精確度四舍五入,如果最終零點所在區(qū)間的端點的近似值相同,則近似值即為所求的近似解.6、C【解析】由題意,根據(jù)扇形面積公式及二次函數(shù)的知識即可求解.【詳解】解:設(shè)扇形的半徑為R,弧長為l,由題意得,則扇形的面積,所以該扇形面積的最大值為49,故選:C.7、D【解析】根據(jù)數(shù)量積的運算律直接展開,將向量的夾角與模代入數(shù)據(jù),得到結(jié)果【詳解】=8+3-18=8+3×2×3×-18=-1,故選D.【點睛】本題考查數(shù)量積的運算,屬于基礎(chǔ)題8、A【解析】根據(jù)圖象可得、,然后利用求出即可.【詳解】由圖可知,C正確;,則,,B正確;,A錯誤;因為,則,即,又,則,D正確故選:A9、B【解析】利用對數(shù)的運算性質(zhì)將化為和的形式,代入和的值即可得解.【詳解】.故選:B10、A【解析】令,解方程可求得,由此可求得兩點坐標,得到關(guān)于點對稱,由可求得結(jié)果.【詳解】令,,解得:或(舍),,或,則或,不妨令,,則關(guān)于點對稱,.故選:A.二、填空題:本大題共6小題,每小題5分,共30分。11、②④【解析】根據(jù)三角函數(shù)的性質(zhì),依次分析各選項即可得答案.【詳解】解:①因為,故不存在實數(shù),使得成立,錯誤;②函數(shù),由于是偶函數(shù),故是偶函數(shù),正確;③若,均為第一象限角,顯然,故錯誤;④當(dāng)時,,由于是函數(shù)的一條對稱軸,故是函數(shù)的一條對稱軸方程,正確.故正確的命題是:②④故答案為:②④12、11【解析】由.13、【解析】當(dāng)x<0時,-x>0,∴f(-x)=+1,又f(-x)=-f(x),∴f(x)=,故填.14、【解析】根據(jù)同角三角函數(shù)關(guān)系結(jié)合誘導(dǎo)公式計算得到答案.【詳解】為第二象限角,且,故,.故答案為:.15、5【解析】利用平移變換和反函數(shù)的定義得到的解析式,進而得解.【詳解】函數(shù)的圖象先向下平移1個單位長度得到作關(guān)于直線對稱的圖象,即的反函數(shù),則,,即,故答案為:5【點睛】關(guān)鍵點點睛:本題考查圖像的平移變換和反函數(shù)的應(yīng)用,利用反函數(shù)的性質(zhì)求出的解析式是解題的關(guān)鍵,屬于基礎(chǔ)題.16、2.【解析】分析:要求小蟲爬行的最短距離,需將圓錐的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果詳解:由題意知底面圓的直徑AB=2,故底面周長等于2π.設(shè)圓錐的側(cè)面展開后的扇形圓心角為n°,根據(jù)底面周長等于展開后扇形的弧長得2π=,解得n=90,所以展開圖中∠PSC=90°,根據(jù)勾股定理求得PC=2,所以小蟲爬行的最短距離為2.故答案為2點睛:圓錐的側(cè)面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長.本題就是把圓錐的側(cè)面展開成扇形,“化曲面為平面”,用勾股定理解決三、三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),【解析】(1)利用已知條件和,可以求出函數(shù)的周期,利用是對稱軸和,可以求解出的值,從而完成解析式的求解;(2)先寫出函數(shù)經(jīng)過平移以后得到的函數(shù)解析式,然后再求解的遞減區(qū)間即可完成求解.【小問1詳解】由時,,知,∴,∵的圖象關(guān)于直線對稱,∴,,∵,∴,∴【小問2詳解】由題意知:由,,∴,,∴的單調(diào)遞減區(qū)間是,18、(1);(2)【解析】(1)根據(jù)題意,構(gòu)造齊次式求解即可;(2)根據(jù),并結(jié)合求解即可.【詳解】解:(1)因為所以,(2)因為,所以,因為,所以,所以所以所以19、(1)(2)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為【解析】(1)根據(jù)奇函數(shù)定義結(jié)合已知可得;(2)先求時的單調(diào)區(qū)間,然后由對稱性可得.【小問1詳解】∵函數(shù)f(x)的圖像關(guān)于原點對稱.∴.當(dāng)時,,又時,,∴當(dāng)時,.∴【小問2詳解】當(dāng)時,函數(shù)的圖像開口向下,對稱軸為直線,∴函數(shù)f(x)在[0,3]上單調(diào)遞增,在[3,+∞)上單調(diào)遞減.又∵函數(shù)f(x)的圖像關(guān)于原點對稱,∴函數(shù)f(x)的單調(diào)遞減區(qū)間為;單調(diào)遞增區(qū)間為.20、(1);(2)當(dāng)甲大棚投入資金為128萬元,乙大棚投入資金為72萬元時,總收益最大.【解析】(1)根據(jù)題意,可分別求得甲、乙兩個大棚的資金投入值,代入解析式即可求得總收益.(2)表示出總收益的表達式,并求得自變量取值范圍,利用換元法轉(zhuǎn)化為二次函數(shù)形式,即可確定最大值.【詳解】(1)當(dāng)甲大棚的資金投入為50萬元時,乙大棚資金投入為150萬元,則由足,可得總收益為萬元;(2)根據(jù)題意,可知總收益

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論