版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
我是一毛我是二毛我是三毛我是誰?我不是四毛!我是小明!不完全歸納猜:四毛!完全歸納?我是一毛我是二毛我是三毛我是誰?我不是四毛!我是小明!不完全1解:猜想數(shù)列的通項(xiàng)公式為驗(yàn)證:同理得啊,有完沒完啊?
正整數(shù)無數(shù)個(gè)!提出問題:對(duì)于數(shù)列{},已知,(1)求出數(shù)列前4項(xiàng),你能得到什么猜想?(2)你的猜想一定是正確的嗎?解:猜想數(shù)列的通項(xiàng)公式為驗(yàn)證:同理得啊,有完沒完啊?正整數(shù)2?本題有沒有行之有效,步驟有限的方法呢?下面我們看看下列的情景對(duì)我們解決本題證明有什么啟示?問題情景你見過多米諾骨牌游戲嗎?請(qǐng)欣賞一下那場景!?本題有沒有行之有效,步驟有限的方法呢?下面我們看看下列的情31、第一塊骨牌倒下2、任意相鄰的兩塊骨牌,前一塊倒下一定導(dǎo)致后一塊倒下條件(2)事實(shí)上給出了一個(gè)遞推關(guān)系,換言之就是假設(shè)第K塊倒下,則相鄰的第K+1塊也倒下請(qǐng)同學(xué)們思考所有的骨牌都一一倒下只需滿足哪幾個(gè)條件數(shù)學(xué)歸納法.1、第一塊骨牌倒下2、任意相鄰的兩塊骨牌,前一塊倒下一定導(dǎo)致42.3數(shù)學(xué)歸納法2.3數(shù)學(xué)歸納法5多米諾骨牌游戲與我們前面所提到的要解決的問題的相似性。多米諾骨牌游戲原理(1)第一塊骨牌倒下。(2)若第k塊倒下時(shí),則相鄰的第k+1塊也倒下。根據(jù)(1)和(2),可知不論有多少塊骨牌,都能全部倒下。(1)當(dāng)n=1時(shí),猜想成立根據(jù)(1)和(2),可知對(duì)任意的正整數(shù)n,猜想都成立。通項(xiàng)公式為的證明方法(2)若當(dāng)n=k時(shí)猜想成立,即,則當(dāng)n=k+1時(shí)猜想也成立,即。多米諾骨牌游戲與我們前面所提到的要解決的問題的相似性。多米諾6對(duì)于數(shù)列{},已知,寫出數(shù)列前4項(xiàng),并猜想其通項(xiàng)公式;同學(xué)們,你能驗(yàn)證你的猜想是不是正確的呢?證明:(1)當(dāng)猜想成立。(2)那么,當(dāng)解:猜想數(shù)列的通項(xiàng)公式為1nan=根據(jù)(1)和(2),猜想對(duì)于任何都成立。見書P93對(duì)于數(shù)列{},已知,寫出數(shù)列前4項(xiàng),并猜想其7
1.驗(yàn)證第一個(gè)命題成立(即n=n0第一個(gè)命題對(duì)應(yīng)的n的值,如n0=1);
2.假設(shè)當(dāng)n=k時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立.(歸納奠基)數(shù)學(xué)歸納法:關(guān)于正整數(shù)n的命題(相當(dāng)于多米諾骨牌),我們可以采用下面方法來證明其正確性:
由(1)、(2)知,對(duì)于一切n≥n0的自然數(shù)n都成立!(歸納遞推)注意:運(yùn)用數(shù)學(xué)歸納法證題,以上兩步缺一不可.1.驗(yàn)證第一個(gè)命題成立(即n=n0第一個(gè)命題對(duì)應(yīng)的n8證明:(1)當(dāng)n=1時(shí),左邊=12=1右邊=1等式成立(2)假設(shè)當(dāng)n=k時(shí)等式成立,即那么,當(dāng)n=k+1時(shí)即當(dāng)n=k+1等式也成立根據(jù)(1)和(2),可知等式對(duì)任何都成立.湊出目標(biāo)用到假設(shè)例1.
用數(shù)學(xué)歸納法證明見書P94例1證明:(1)當(dāng)n=1時(shí),左邊=12=1右邊=1等式成立(2)9練習(xí):用數(shù)學(xué)歸納法證明1+3+5+……+(2n-1)=n2(n∈N
).證明:(1)當(dāng)n=1時(shí),左=1,右=12=1∴n=1時(shí),等式成立
(2)假設(shè)n=k時(shí),等式成立,即1+3+5+…+(2k1)=k2
那么,當(dāng)n=k+1時(shí)左=1+3+5+…+(2k1)+[2(k+1)-1]=k2+2k+1=(k+1)2=右即n=k+1時(shí)等式成立由(1)、(2)可知等式對(duì)任何nN*都成立遞推基礎(chǔ)遞推依據(jù)練習(xí):用數(shù)學(xué)歸納法證明1+3+5+……+(2n-1)=n2(10錯(cuò)誤!錯(cuò)誤原因:沒有第一步n=1等式成立的證明其實(shí)n=1等式并不成立,左邊=1,右邊=2例2.試判斷下列用數(shù)學(xué)歸納法證明過程是否正確?那么,當(dāng)n=k+1時(shí)即當(dāng)n=k+1時(shí)等式也成立可知等式對(duì)任何都成立.錯(cuò)誤!錯(cuò)誤原因:沒有第一步n=1等式成立的證明其實(shí)n=1等式11那么,當(dāng)n=k+1時(shí)-證明:(1)當(dāng)n=1時(shí),左邊=20=1,右邊=21-1=1等式成立(2)假設(shè)n=k時(shí),等式成立,即-即當(dāng)n=k+1時(shí)等式也成立根據(jù)(1)和(2),可知等式對(duì)任何都成立.錯(cuò)誤原因:由證明n=k+1等式成立時(shí)沒有用到n=k命題成立的歸納假設(shè)錯(cuò)誤!那么,當(dāng)n=k+1時(shí)-證明:(1)當(dāng)n=1時(shí),左邊=20=112例3.已知數(shù)列計(jì)算,根據(jù)計(jì)算的結(jié)果,猜想的表達(dá)式,并用數(shù)學(xué)歸納法進(jìn)行證明.當(dāng)時(shí)當(dāng)時(shí)當(dāng)時(shí)當(dāng)時(shí)然后用數(shù)學(xué)歸納法證明猜想
………見書P94例2(略)例3.已知數(shù)列當(dāng)13經(jīng)常不斷地學(xué)習(xí),你就什么都知道。你知道得越多,你就越有力量StudyConstantly,AndYouWillKnowEverything.TheMoreYouKnow,TheMorePowerfulYouWillBe寫在最后經(jīng)常不斷地學(xué)習(xí),你就什么都知道。你知道得越多,你就越有力量寫14感謝聆聽不足之處請(qǐng)大家批評(píng)指導(dǎo)PleaseCriticizeAndGuideTheShortcomings結(jié)束語講師:XXXXXXXX年XX月XX日
感謝聆聽結(jié)束語講師:XXXXXX15我是一毛我是二毛我是三毛我是誰?我不是四毛!我是小明!不完全歸納猜:四毛!完全歸納?我是一毛我是二毛我是三毛我是誰?我不是四毛!我是小明!不完全16解:猜想數(shù)列的通項(xiàng)公式為驗(yàn)證:同理得啊,有完沒完啊?
正整數(shù)無數(shù)個(gè)!提出問題:對(duì)于數(shù)列{},已知,(1)求出數(shù)列前4項(xiàng),你能得到什么猜想?(2)你的猜想一定是正確的嗎?解:猜想數(shù)列的通項(xiàng)公式為驗(yàn)證:同理得啊,有完沒完啊?正整數(shù)17?本題有沒有行之有效,步驟有限的方法呢?下面我們看看下列的情景對(duì)我們解決本題證明有什么啟示?問題情景你見過多米諾骨牌游戲嗎?請(qǐng)欣賞一下那場景!?本題有沒有行之有效,步驟有限的方法呢?下面我們看看下列的情181、第一塊骨牌倒下2、任意相鄰的兩塊骨牌,前一塊倒下一定導(dǎo)致后一塊倒下條件(2)事實(shí)上給出了一個(gè)遞推關(guān)系,換言之就是假設(shè)第K塊倒下,則相鄰的第K+1塊也倒下請(qǐng)同學(xué)們思考所有的骨牌都一一倒下只需滿足哪幾個(gè)條件數(shù)學(xué)歸納法.1、第一塊骨牌倒下2、任意相鄰的兩塊骨牌,前一塊倒下一定導(dǎo)致192.3數(shù)學(xué)歸納法2.3數(shù)學(xué)歸納法20多米諾骨牌游戲與我們前面所提到的要解決的問題的相似性。多米諾骨牌游戲原理(1)第一塊骨牌倒下。(2)若第k塊倒下時(shí),則相鄰的第k+1塊也倒下。根據(jù)(1)和(2),可知不論有多少塊骨牌,都能全部倒下。(1)當(dāng)n=1時(shí),猜想成立根據(jù)(1)和(2),可知對(duì)任意的正整數(shù)n,猜想都成立。通項(xiàng)公式為的證明方法(2)若當(dāng)n=k時(shí)猜想成立,即,則當(dāng)n=k+1時(shí)猜想也成立,即。多米諾骨牌游戲與我們前面所提到的要解決的問題的相似性。多米諾21對(duì)于數(shù)列{},已知,寫出數(shù)列前4項(xiàng),并猜想其通項(xiàng)公式;同學(xué)們,你能驗(yàn)證你的猜想是不是正確的呢?證明:(1)當(dāng)猜想成立。(2)那么,當(dāng)解:猜想數(shù)列的通項(xiàng)公式為1nan=根據(jù)(1)和(2),猜想對(duì)于任何都成立。見書P93對(duì)于數(shù)列{},已知,寫出數(shù)列前4項(xiàng),并猜想其22
1.驗(yàn)證第一個(gè)命題成立(即n=n0第一個(gè)命題對(duì)應(yīng)的n的值,如n0=1);
2.假設(shè)當(dāng)n=k時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立.(歸納奠基)數(shù)學(xué)歸納法:關(guān)于正整數(shù)n的命題(相當(dāng)于多米諾骨牌),我們可以采用下面方法來證明其正確性:
由(1)、(2)知,對(duì)于一切n≥n0的自然數(shù)n都成立!(歸納遞推)注意:運(yùn)用數(shù)學(xué)歸納法證題,以上兩步缺一不可.1.驗(yàn)證第一個(gè)命題成立(即n=n0第一個(gè)命題對(duì)應(yīng)的n23證明:(1)當(dāng)n=1時(shí),左邊=12=1右邊=1等式成立(2)假設(shè)當(dāng)n=k時(shí)等式成立,即那么,當(dāng)n=k+1時(shí)即當(dāng)n=k+1等式也成立根據(jù)(1)和(2),可知等式對(duì)任何都成立.湊出目標(biāo)用到假設(shè)例1.
用數(shù)學(xué)歸納法證明見書P94例1證明:(1)當(dāng)n=1時(shí),左邊=12=1右邊=1等式成立(2)24練習(xí):用數(shù)學(xué)歸納法證明1+3+5+……+(2n-1)=n2(n∈N
).證明:(1)當(dāng)n=1時(shí),左=1,右=12=1∴n=1時(shí),等式成立
(2)假設(shè)n=k時(shí),等式成立,即1+3+5+…+(2k1)=k2
那么,當(dāng)n=k+1時(shí)左=1+3+5+…+(2k1)+[2(k+1)-1]=k2+2k+1=(k+1)2=右即n=k+1時(shí)等式成立由(1)、(2)可知等式對(duì)任何nN*都成立遞推基礎(chǔ)遞推依據(jù)練習(xí):用數(shù)學(xué)歸納法證明1+3+5+……+(2n-1)=n2(25錯(cuò)誤!錯(cuò)誤原因:沒有第一步n=1等式成立的證明其實(shí)n=1等式并不成立,左邊=1,右邊=2例2.試判斷下列用數(shù)學(xué)歸納法證明過程是否正確?那么,當(dāng)n=k+1時(shí)即當(dāng)n=k+1時(shí)等式也成立可知等式對(duì)任何都成立.錯(cuò)誤!錯(cuò)誤原因:沒有第一步n=1等式成立的證明其實(shí)n=1等式26那么,當(dāng)n=k+1時(shí)-證明:(1)當(dāng)n=1時(shí),左邊=20=1,右邊=21-1=1等式成立(2)假設(shè)n=k時(shí),等式成立,即-即當(dāng)n=k+1時(shí)等式也成立根據(jù)(1)和(2),可知等式對(duì)任何都成立.錯(cuò)誤原因:由證明n=k+1等式成立時(shí)沒有用到n=k命題成立的歸納假設(shè)錯(cuò)誤!那么,當(dāng)n=k+1時(shí)-證明:(1)當(dāng)n=1時(shí),左邊=20=127例3.已知數(shù)列計(jì)算,根據(jù)計(jì)算的結(jié)果,猜想的表達(dá)式,并用數(shù)學(xué)歸納法進(jìn)行證明.當(dāng)時(shí)當(dāng)時(shí)當(dāng)時(shí)當(dāng)時(shí)然后用數(shù)學(xué)歸納法證明猜想
………見書P94例2(略)例3.已知數(shù)列當(dāng)28經(jīng)常不斷地學(xué)習(xí),你就什么都知道
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年個(gè)人抵押車輛借款合同編制要點(diǎn)
- 2025版公寓水電維修合同范本(1000字系列)12篇
- 2025版關(guān)鍵信息基礎(chǔ)設(shè)施保密協(xié)議合同3篇
- 二零二五年油茶林生態(tài)環(huán)境保護(hù)與修復(fù)合作協(xié)議3篇
- 2025年度個(gè)人信用保證反擔(dān)保承諾書示例4篇
- 2025年汽車配件代購合同示范文本4篇
- 個(gè)性化2024版中介服務(wù)居間合同樣本一
- 2025年度二零二五年度國際貿(mào)易保理業(yè)務(wù)合作協(xié)議4篇
- 個(gè)人貨款定金擔(dān)保合同2024年版3篇
- 二零二五版數(shù)據(jù)中心網(wǎng)絡(luò)安全審計(jì)與整改服務(wù)協(xié)議3篇
- 醫(yī)學(xué)脂質(zhì)的構(gòu)成功能及分析專題課件
- 高技能人才培養(yǎng)的策略創(chuàng)新與實(shí)踐路徑
- 人教版(2024新版)七年級(jí)上冊(cè)英語期中+期末學(xué)業(yè)質(zhì)量測試卷 2套(含答案)
- 2024年湖北省中考數(shù)學(xué)試卷(含答案)
- 油煙機(jī)清洗安全合同協(xié)議書
- 2024年云南省中考數(shù)學(xué)試題(原卷版)
- 污水土地處理系統(tǒng)中雙酚A和雌激素的去除及微生物研究
- 氣胸病人的護(hù)理幻燈片
- 《地下建筑結(jié)構(gòu)》第二版(朱合華)中文(2)課件
- JB T 7946.1-2017鑄造鋁合金金相
- 包裝過程質(zhì)量控制
評(píng)論
0/150
提交評(píng)論