版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2021-2022中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,AB∥CD,F(xiàn)E⊥DB,垂足為E,∠1=60°,則∠2的度數(shù)是()A.60° B.50° C.40° D.30°2.如圖,長度為10m的木條,從兩邊各截取長度為xm的木條,若得到的三根木條能組成三角形,則x可以取的值為()A.2m B.m C.3m D.6m3.A,B兩地相距48千米,一艘輪船從A地順流航行至B地,又立即從B地逆流返回A地,共用去9小時,已知水流速度為4千米/時,若設該輪船在靜水中的速度為x千米/時,則可列方程()A. B.C.+4=9 D.4.在△ABC中,∠C=90°,tanA=125,△ABC的周長為60,那么△ABCA.60 B.30 C.240 D.1205.濕地旅游愛好者小明了解到鄂東南市水資源總量為42.4億立方米,其中42.4億用科學記數(shù)法可表示為()A.42.4×109 B.4.24×108 C.4.24×109 D.0.424×1086.如圖是二次函數(shù)的圖象,有下面四個結(jié)論:;;;,其中正確的結(jié)論是
A. B. C. D.7.從邊長為的大正方形紙板中挖去一個邊長為的小正方形紙板后,將其裁成四個相同的等腰梯形(如圖甲),然后拼成一個平行四邊形(如圖乙)。那么通過計算兩個圖形陰影部分的面積,可以驗證成立的公式為()A. B.C. D.8.將三粒均勻的分別標有,,,,,的正六面體骰子同時擲出,朝上一面上的數(shù)字分別為,,,則,,正好是直角三角形三邊長的概率是()A. B. C. D.9.如圖,是由一個圓柱體和一個長方體組成的幾何體,其主視圖是()A. B. C. D.10.單項式2a3b的次數(shù)是()A.2 B.3 C.4 D.511.在函數(shù)y=中,自變量x的取值范圍是()A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠112.某校有35名同學參加眉山市的三蘇文化知識競賽,預賽分數(shù)各不相同,取前18名同學參加決賽.其中一名同學知道自己的分數(shù)后,要判斷自己能否進入決賽,只需要知道這35名同學分數(shù)的(
).A.眾數(shù) B.中位數(shù) C.平均數(shù) D.方差二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,PA、PB是⊙O的切線,A、B為切點,AC是⊙O的直徑,∠P=40°,則∠BAC=.14.小剛家、公交車站、學校在一條筆直的公路旁(小剛家、學校到這條公路的距離忽略不計).一天,小剛從家出發(fā)去上學,沿這條公路步行到公交站恰好乘上一輛公交車,公交車沿這條公路勻速行駛,小剛下車時發(fā)現(xiàn)還有4分鐘上課,于是他沿著這條公路跑步趕到學校(上、下車時間忽略不計),小剛與學校的距離s(單位:米)與他所用的時間t(單位:分鐘)之間的函數(shù)關系如圖所示.已知小剛從家出發(fā)7分鐘時與家的距離是1200米,從上公交車到他到達學校共用10分鐘.下列說法:①公交車的速度為400米/分鐘;②小剛從家出發(fā)5分鐘時乘上公交車;③小剛下公交車后跑向?qū)W校的速度是100米/分鐘;④小剛上課遲到了1分鐘.其中正確的序號是_____.15.函數(shù)y=中,自變量x的取值范圍是________.16.如圖,△ABC三邊的中線AD,BE,CF的公共點G,若,則圖中陰影部分面積是.17.如圖,甲和乙同時從學校放學,兩人以各自送度勻速步行回家,甲的家在學校的正西方向,乙的家在學校的正東方向,乙家離學校的距離比甲家離學校的距離遠3900米,甲準備一回家就開始做什業(yè),打開書包時發(fā)現(xiàn)錯拿了乙的練習冊.于是立即步去追乙,終于在途中追上了乙并交還了練習冊,然后再以先前的速度步行回家,(甲在家中耽擱和交還作業(yè)的時間忽略不計)結(jié)果甲比乙晚回到家中,如圖是兩人之間的距離y米與他們從學校出發(fā)的時間x分鐘的函數(shù)關系圖,則甲的家和乙的家相距_____米.18.在矩形ABCD中,對角線AC、BD相交于點O,∠AOB=60°,AC=6cm,則AB的長是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知a2+2a=9,求的值.20.(6分)風電已成為我國繼煤電、水電之后的第三大電源,風電機組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進43米到達山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達最高位置,此時測得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)21.(6分)解方程:22.(8分)某商場購進甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400元已知乙種商品每件進價比甲種商品每件進價多8元,且購進的甲、乙兩種商品件數(shù)相同.求甲、乙兩種商品的每件進價;該商場將購進的甲、乙兩種商品進行銷售,甲種商品的銷售單價為60元,乙種商品的銷售單價為88元,銷售過程中發(fā)現(xiàn)甲種商品銷量不好,商場決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價的七折銷售;乙種商品銷售單價保持不變要使兩種商品全部售完后共獲利不少于2460元,問甲種商品按原銷售單價至少銷售多少件?23.(8分)某市為了解本地七年級學生寒假期間參加社會實踐活動情況,隨機抽查了部分七年級學生寒假參加社會實踐活動的天數(shù)(“A﹣﹣﹣不超過5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并將得到的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)以上的信息,回答下列問題:(1)補全扇形統(tǒng)計圖和條形統(tǒng)計圖;(2)所抽查學生參加社會實踐活動天數(shù)的眾數(shù)是(選填:A、B、C、D、E);(3)若該市七年級約有2000名學生,請你估計參加社會實踐“活動天數(shù)不少于7天”的學生大約有多少人?24.(10分)A糧倉和B糧倉分別庫存糧食12噸和6噸,現(xiàn)決定支援給C市10噸和D市8噸.已知從A糧倉調(diào)運一噸糧食到C市和D市的運費分別為400元和800元;從B糧倉調(diào)運一噸糧食到C市和D市的運費分別為300元和500元.設B糧倉運往C市糧食x噸,求總運費W(元)關于x的函數(shù)關系式.(寫出自變量的取值范圍)若要求總運費不超過9000元,問共有幾種調(diào)運方案?求出總運費最低的調(diào)運方案,最低運費是多少?25.(10分)計算:(﹣2)0++4cos30°﹣|﹣|.26.(12分)2018年“植樹節(jié)”前夕,某小區(qū)為綠化環(huán)境,購進200棵柏樹苗和120棵棗樹苗,且兩種樹苗所需費用相同.每棵棗樹苗的進價比每棵柏樹苗的進價的2倍少5元,每棵柏樹苗的進價是多少元.27.(12分)如圖,AM是△ABC的中線,D是線段AM上一點(不與點A重合).DE∥AB交AC于點F,CE∥AM,連結(jié)AE.(1)如圖1,當點D與M重合時,求證:四邊形ABDE是平行四邊形;(2)如圖2,當點D不與M重合時,(1)中的結(jié)論還成立嗎?請說明理由.(3)如圖3,延長BD交AC于點H,若BH⊥AC,且BH=AM.①求∠CAM的度數(shù);②當FH=,DM=4時,求DH的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
由EF⊥BD,∠1=60°,結(jié)合三角形內(nèi)角和為180°即可求出∠D的度數(shù),再由“兩直線平行,同位角相等”即可得出結(jié)論.【詳解】解:在△DEF中,∠1=60°,∠DEF=90°,
∴∠D=180°-∠DEF-∠1=30°.
∵AB∥CD,
∴∠2=∠D=30°.
故選D.【點睛】本題考查平行線的性質(zhì)以及三角形內(nèi)角和為180°,解題關鍵是根據(jù)平行線的性質(zhì),找出相等、互余或互補的角.2、C【解析】
依據(jù)題意,三根木條的長度分別為xm,xm,(10-2x)m,在根據(jù)三角形的三邊關系即可判斷.【詳解】解:由題意可知,三根木條的長度分別為xm,xm,(10-2x)m,∵三根木條要組成三角形,∴x-x<10-2x<x+x,解得:.故選擇C.【點睛】本題主要考察了三角形三邊的關系,關鍵是掌握三角形兩邊之和大于第三邊,兩邊之差的絕對值小于第三邊.3、A【解析】
根據(jù)輪船在靜水中的速度為x千米/時可進一步得出順流與逆流速度,從而得出各自航行時間,然后根據(jù)兩次航行時間共用去9小時進一步列出方程組即可.【詳解】∵輪船在靜水中的速度為x千米/時,∴順流航行時間為:,逆流航行時間為:,∴可得出方程:,故選:A.【點睛】本題主要考查了分式方程的應用,熟練掌握順流與逆流速度的性質(zhì)是解題關鍵.4、D【解析】
由tanA的值,利用銳角三角函數(shù)定義設出BC與AC,進而利用勾股定理表示出AB,由周長為60求出x的值,確定出兩直角邊,即可求出三角形面積.【詳解】如圖所示,由tanA=125設BC=12x,AC=5x,根據(jù)勾股定理得:AB=13x,由題意得:12x+5x+13x=60,解得:x=2,∴BC=24,AC=10,則△ABC面積為120,故選D.【點睛】此題考查了解直角三角形,銳角三角函數(shù)定義,以及勾股定理,熟練掌握勾股定理是解本題的關鍵.5、C【解析】
科學記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時,要看把原數(shù)變成時,小數(shù)點移動了多少位,的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,是正數(shù);當原數(shù)的絕對值<1時,是負數(shù).【詳解】42.4億=4240000000,用科學記數(shù)法表示為:4.24×1.故選C.【點睛】考查科學記數(shù)法,掌握絕對值大于1的數(shù)的表示方法是解題的關鍵.6、D【解析】
根據(jù)拋物線開口方向得到,根據(jù)對稱軸得到,根據(jù)拋物線與軸的交點在軸下方得到,所以;時,由圖像可知此時,所以;由對稱軸,可得;當時,由圖像可知此時,即,將代入可得.【詳解】①根據(jù)拋物線開口方向得到,根據(jù)對稱軸得到,根據(jù)拋物線與軸的交點在軸下方得到,所以,故①正確.②時,由圖像可知此時,即,故②正確.③由對稱軸,可得,所以錯誤,故③錯誤;④當時,由圖像可知此時,即,將③中變形為,代入可得,故④正確.故答案選D.【點睛】本題考查了二次函數(shù)的圖像與系數(shù)的關系,注意用數(shù)形結(jié)合的思想解決問題。7、D【解析】
分別根據(jù)正方形及平行四邊形的面積公式求得甲、乙中陰影部分的面積,從而得到可以驗證成立的公式.【詳解】陰影部分的面積相等,即甲的面積=a2﹣b2,乙的面積=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以驗證成立的公式為:a2﹣b2=(a+b)(a﹣b).故選:D.【點睛】考點:等腰梯形的性質(zhì);平方差公式的幾何背景;平行四邊形的性質(zhì).8、C【解析】
三粒均勻的正六面體骰子同時擲出共出現(xiàn)216種情況,而邊長能構(gòu)成直角三角形的數(shù)字為3、4、5,含這三個數(shù)字的情況有6種,故由概率公式計算即可.【詳解】解:因為將三粒均勻的分別標有1,2,3,4,5,6的正六面體骰子同時擲出,按出現(xiàn)數(shù)字的不同共=216種情況,其中數(shù)字分別為3,4,5,是直角三角形三邊長時,有6種情況,所以其概率為,故選C.【點睛】本題考查的是概率的求法.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.邊長為3,4,5的三角形組成直角三角形.9、B【解析】試題分析:長方體的主視圖為矩形,圓柱的主視圖為矩形,根據(jù)立體圖形可得:主視圖的上面和下面各為一個矩形,且下面矩形的長比上面矩形的長要長一點,兩個矩形的寬一樣大?。键c:三視圖.10、C【解析】分析:根據(jù)單項式的性質(zhì)即可求出答案.詳解:該單項式的次數(shù)為:3+1=4故選C.點睛:本題考查單項式的次數(shù)定義,解題的關鍵是熟練運用單項式的次數(shù)定義,本題屬于基礎題型.11、C【解析】
根據(jù)分式和二次根式有意義的條件進行計算即可.【詳解】由題意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.故x的取值范圍是x≥2且x≠2.故選C.【點睛】本題考查了函數(shù)自變量的取值范圍問題,掌握分式和二次根式有意義的條件是解題的關鍵.12、B【解析】分析:由于比賽取前18名參加決賽,共有35名選手參加,根據(jù)中位數(shù)的意義分析即可.詳解:35個不同的成績按從小到大排序后,中位數(shù)及中位數(shù)之后的共有18個數(shù),故只要知道自己的成績和中位數(shù)就可以知道是否進入決賽了.故選B.點睛:本題考查了統(tǒng)計量的選擇,以及中位數(shù)意義,解題的關鍵是正確的求出這組數(shù)據(jù)的中位數(shù)二、填空題:(本大題共6個小題,每小題4分,共24分.)13、20°【解析】
根據(jù)切線的性質(zhì)可知∠PAC=90°,由切線長定理得PA=PB,∠P=40°,求出∠PAB的度數(shù),用∠PAC﹣∠PAB得到∠BAC的度數(shù).【詳解】解:∵PA是⊙O的切線,AC是⊙O的直徑,∴∠PAC=90°.∵PA,PB是⊙O的切線,∴PA=PB.∵∠P=40°,∴∠PAB=(180°﹣∠P)÷2=(180°﹣40°)÷2=70°,∴∠BAC=∠PAC﹣∠PAB=90°﹣70°=20°.故答案為20°.【點睛】本題考查了切線的性質(zhì),根據(jù)切線的性質(zhì)和切線長定理進行計算求出角的度數(shù).14、①②③【解析】
由公交車在7至12分鐘時間內(nèi)行駛的路程可求解其行駛速度,再由求解的速度可知公交車行駛的時間,進而可知小剛上公交車的時間;由上公交車到他到達學校共用10分鐘以及公交車行駛時間可知小剛跑步時間,進而判斷其是否遲到,再由圖可知其跑步距離,可求解小剛下公交車后跑向?qū)W校的速度.【詳解】解:公交車7至12分鐘時間內(nèi)行駛的路程為3500-1200-300=2000m,則其速度為2000÷5=400米/分鐘,故①正確;由圖可知,7分鐘時,公交車行駛的距離為1200-400=800m,則公交車行駛的時間為800÷400=2min,則小剛從家出發(fā)7-2=5分鐘時乘上公交車,故②正確;公交車一共行駛了2800÷400=7分鐘,則小剛從下公交車到學校一共花了10-7=3分鐘<4分鐘,故④錯誤,再由圖可知小明跑步時間為300÷3=100米/分鐘,故③正確.故正確的序號是:①②③.【點睛】本題考查了一次函數(shù)的應用.15、x≤1【解析】分析:根據(jù)二次根式有意義的條件解答即可.詳解:∵二次根式有意義,被開方數(shù)為非負數(shù),∴1-x≥0,解得x≤1.故答案為x≤1.點睛:本題考查了二次根式有意義的條件,熟知二次根式有意義,被開方數(shù)為非負數(shù)是解題的關鍵.16、4【解析】試題分析:由中線性質(zhì),可得AG=2GD,則,∴陰影部分的面積為4;其實圖中各個單獨小三角形面積都相等本題雖然超綱,但學生容易蒙對的.考點:中線的性質(zhì).17、5200【解析】設甲到學校的距離為x米,則乙到學校的距離為(3900+x),甲的速度為4y(米/分鐘),則乙的速度為3y(米/分鐘),依題意得:解得所以甲到學校距離為2400米,乙到學校距離為6300米,所以甲的家和乙的家相距8700米.故答案是:8700.【點睛】本題考查一次函數(shù)的應用,二元一次方程組的應用等知識,解題的關鍵是讀懂圖象信息.18、3cm.【解析】
根據(jù)矩形的對角線相等且互相平分可得OA=OB=OD=OC,由∠AOB=60°,判斷出△AOB是等邊三角形,根據(jù)等邊三角形的性質(zhì)求出AB即可.【詳解】解:∵四邊形ABCD是矩形,AC=6cm∴OA=OC=OB=OD=3cm,∵∠AOB=60°,∴△AOB是等邊三角形,∴AB=OA=3cm,故答案為:3cm【點睛】本題主要考查矩形的性質(zhì)和等邊三角形的判定和性質(zhì),解本題的關鍵是掌握矩形的對角線相等且互相平分.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、,.【解析】試題分析:原式第二項利用除法法則變形,約分后兩項通分并利用同分母分式的減法法則計算得到最簡結(jié)果,把已知等式變形后代入計算即可求出值.試題解析:===,∵a2+2a=9,∴(a+1)2=1.∴原式=.20、1米.【解析】試題分析:作BE⊥DH,知GH=BE、BG=EH=10,設AH=x,則BE=GH=43+x,由CH=AHtan∠CAH=tan55°?x知CE=CH﹣EH=tan55°?x﹣10,根據(jù)BE=DE可得關于x的方程,解之可得.試題解析:解:如圖,作BE⊥DH于點E,則GH=BE、BG=EH=10,設AH=x,則BE=GH=GA+AH=43+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°?x,∴CE=CH﹣EH=tan55°?x﹣10,∵∠DBE=45°,∴BE=DE=CE+DC,即43+x=tan55°?x﹣10+35,解得:x≈45,∴CH=tan55°?x=1.4×45=1.答:塔桿CH的高為1米.點睛:本題考查了解直角三角形的應用,解答本題要求學生能借助仰角構(gòu)造直角三角形并解直角三角形.21、x=-4是方程的解【解析】
分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.【詳解】∴x=-4,當x=-4時,∴x=-4是方程的解【點睛】本題考查了分式方程的解法,(1)解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.(2)解分式方程一定注意要驗根.22、甲種商品的每件進價為40元,乙種商品的每件進價為48元;甲種商品按原銷售單價至少銷售20件.【解析】【分析】設甲種商品的每件進價為x元,乙種商品的每件進價為(x+8))元根據(jù)“某商場購進甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400元購進的甲、乙兩種商品件數(shù)相同”列出方程進行求解即可;設甲種商品按原銷售單價銷售a件,則由“兩種商品全部售完后共獲利不少于2460元”列出不等式進行求解即可.【詳解】設甲種商品的每件進價為x元,則乙種商品的每件進價為元,根據(jù)題意得,,解得,經(jīng)檢驗,是原方程的解,答:甲種商品的每件進價為40元,乙種商品的每件進價為48元;甲乙兩種商品的銷售量為,設甲種商品按原銷售單價銷售a件,則,解得,答:甲種商品按原銷售單價至少銷售20件.【點睛】本題考查了分式方程的應用,一元一次不等式的應用,弄清題意,找出等量關系列出方程,找出不等關系列出不等式是解題的關鍵.23、(1)見解析;(2)A;(3)800人.【解析】
(1)用A組人數(shù)除以它所占的百分比求出樣本容量,利用360°乘以對應的百分比即可求得扇形圓心角的度數(shù),再求得時間是8天的人數(shù),從而補全扇形統(tǒng)計圖和條形統(tǒng)計圖;(2)根據(jù)眾數(shù)的定義即可求解;(3)利用總?cè)藬?shù)2000乘以對應的百分比即可求解.【詳解】解:(1)∵被調(diào)查的學生人數(shù)為24÷40%=60人,∴D類別人數(shù)為60﹣(24+12+15+3)=6人,則D類別的百分比為×100%=10%,補全圖形如下:(2)所抽查學生參加社會實踐活動天數(shù)的眾數(shù)是A,故答案為:A;(3)估計參加社會實踐“活動天數(shù)不少于7天”的學生大約有2000×(25%+10%+5%)=800人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.24、(1)w=200x+8600(0≤x≤6);(2)有3種調(diào)運方案,方案一:從B市調(diào)運到C市0臺,D市6臺;從A市調(diào)運到C市10臺,D市2臺;方案二:從B市調(diào)運到C市1臺,D市5臺;從A市調(diào)運到C市9臺,D市3臺;方案三:從B市調(diào)運到C市2臺,D市4臺;從A市調(diào)運到C市8臺,D市4臺;(3)從A市調(diào)運到C市10臺,D市2臺;最低運費是8600元.【解析】
(1)設出B糧倉運往C的數(shù)量為x噸,然后根據(jù)A,B兩市的庫存量,和C,D兩市的需求量,分別表示出B運往C,D的數(shù)量,再根據(jù)總費用=A運往C的運費+A運往D的運費+B運往C的運費+B運往D的運費,列出函數(shù)關系式;(2)由(1)中總費用不超過9000元,然后根據(jù)取值范圍來得出符合條件的方案;(3)根據(jù)(1)中的函數(shù)式以及自變量的取值范圍即可得出費用最小的方案.【詳解】解:(1)設B糧倉運往C市糧食x噸,則B糧倉運往D市糧食6﹣x噸,A糧倉運往C市糧食10﹣x噸,A糧倉運往D市糧食12﹣(10﹣x)=x+2噸,總運費w=300x+500(6﹣x)+400(10﹣x)+800(x+2)=200x+8600(0≤x≤6).(2)200x+8600≤9000解得x≤2共有3種調(diào)運方案方案一:從B市調(diào)運到C市0臺,D市6臺;從A市調(diào)運到C市10臺,D市2臺;方案二:從B市調(diào)運到C市1臺,D市5臺;從A市調(diào)運到C市9臺,D市3臺;方案三:從B市調(diào)運到C市2臺,D市4臺;從A市調(diào)運到C市8臺,D市4臺;(3)w=200x+8600k>0,所以當x=0時,總運費最低.也就是從B市調(diào)運到C市0臺,D市6臺;從A市調(diào)運到C市10臺,D市2臺;最低運費是8600元.【點睛】本題重點考查函數(shù)模型的構(gòu)建,考查利用一次函數(shù)的有關知識解答實際應用題,解答一次函數(shù)的應用問題中,要注意自變量的取值范圍還必須使實際問題有意義.25、1【解析】分析:按照實數(shù)的運算順序進行運算即可.詳解:原式=1.點睛:本題考查實數(shù)的運算,主要考查零次冪,負整數(shù)指數(shù)冪,特殊角的三角函數(shù)值以及二次根式,熟
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版企業(yè)人力資源總監(jiān)職責與權(quán)益合同3篇
- 武漢體育學院《地下水數(shù)值模擬基礎與應用》2023-2024學年第一學期期末試卷
- 武漢傳媒學院《現(xiàn)代分析檢驗技術(shù)應用》2023-2024學年第一學期期末試卷
- 二零二五年度建筑工地安全文明施工評估合同3篇
- 二零二五版兒童樂園開業(yè)慶典承包合同范本3篇
- 2024陶瓷廠勞務外派工作合同模板3篇
- 2025版大型工程船舶租賃合同6篇
- 威海職業(yè)學院《數(shù)值計算與仿真》2023-2024學年第一學期期末試卷
- 二零二五年度酒店會議場地預訂與策劃服務合同3篇
- 天津城市職業(yè)學院《工程光學》2023-2024學年第一學期期末試卷
- 南充化工碼頭管網(wǎng)施工方案(初稿)
- 2023年消防接警員崗位理論知識考試參考題庫(濃縮500題)
- GB/T 30285-2013信息安全技術(shù)災難恢復中心建設與運維管理規(guī)范
- 魯濱遜漂流記閱讀任務單
- 第一章 運營管理概論1
- 《創(chuàng)意繪畫在小學美術(shù)教育中的應用(論文)6000字》
- 主體結(jié)構(gòu)驗收匯報材料T圖文并茂
- 管理學原理(南大馬工程)
- 過一個有意義的寒假課件
- 施工現(xiàn)場裝配式集裝箱活動板房驗收表
- 電力業(yè)擴工程竣工驗收單
評論
0/150
提交評論