2023學(xué)年山東省臨沂市臨沂一中高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題(含答案解析)_第1頁
2023學(xué)年山東省臨沂市臨沂一中高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題(含答案解析)_第2頁
2023學(xué)年山東省臨沂市臨沂一中高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題(含答案解析)_第3頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點(diǎn),直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點(diǎn),設(shè)λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣122.在中,為中點(diǎn),且,若,則()A. B. C. D.3.平行四邊形中,已知,,點(diǎn)、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.4.設(shè)等差數(shù)列的前n項(xiàng)和為,若,則()A. B. C.7 D.25.已知為等比數(shù)列,,,則()A.9 B.-9 C. D.6.若函數(shù)在時(shí)取得最小值,則()A. B. C. D.7.命題:的否定為A. B.C. D.8.已知函數(shù)滿足當(dāng)時(shí),,且當(dāng)時(shí),;當(dāng)時(shí),且).若函數(shù)的圖象上關(guān)于原點(diǎn)對(duì)稱的點(diǎn)恰好有3對(duì),則的取值范圍是()A. B. C. D.9.下列說法正確的是()A.“若,則”的否命題是“若,則”B.在中,“”是“”成立的必要不充分條件C.“若,則”是真命題D.存在,使得成立10.函數(shù)的定義域?yàn)椋ǎ〢.或 B.或C. D.11.已知直線:與橢圓交于、兩點(diǎn),與圓:交于、兩點(diǎn).若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.12.已知,,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,則____.14.“石頭、剪子、布”是大家熟悉的二人游戲,其規(guī)則是:在石頭、剪子和布中,二人各隨機(jī)選出一種,若相同則平局;若不同,則石頭克剪子,剪子克布,布克石頭.甲、乙兩人玩一次該游戲,則甲不輸?shù)母怕适莀_____.15.某大學(xué)、、、四個(gè)不同的專業(yè)人數(shù)占本???cè)藬?shù)的比例依次為、、、,現(xiàn)欲采用分層抽樣的方法從這四個(gè)專業(yè)的總?cè)藬?shù)中抽取人調(diào)查畢業(yè)后的就業(yè)情況,則專業(yè)應(yīng)抽取_________人.16.已知,,是平面向量,是單位向量.若,,且,則的取值范圍是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,已知平面,,為等邊三角形,為邊上的中點(diǎn),且.(Ⅰ)求證:面;(Ⅱ)求證:平面平面;(Ⅲ)求該幾何體的體積.18.(12分)在直角坐標(biāo)系x0y中,把曲線α為參數(shù))上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)不變,得到曲線以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程(1)寫出的普通方程和的直角坐標(biāo)方程;(2)設(shè)點(diǎn)M在上,點(diǎn)N在上,求|MN|的最小值以及此時(shí)M的直角坐標(biāo).19.(12分)已知矩陣的一個(gè)特征值為3,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.20.(12分)在邊長為的正方形,分別為的中點(diǎn),分別為的中點(diǎn),現(xiàn)沿折疊,使三點(diǎn)重合,構(gòu)成一個(gè)三棱錐.(1)判別與平面的位置關(guān)系,并給出證明;(2)求多面體的體積.21.(12分)已知函數(shù).(1)證明:當(dāng)時(shí),;(2)若函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.22.(10分)已知數(shù)列的前項(xiàng)和為,且滿足.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)證明:.

2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【答案解析】

分別聯(lián)立直線與拋物線的方程,利用韋達(dá)定理,可得,,然后計(jì)算,可得結(jié)果.【題目詳解】設(shè),聯(lián)立則,因?yàn)橹本€經(jīng)過C的焦點(diǎn),所以.同理可得,所以故選:D.【答案點(diǎn)睛】本題考查的是直線與拋物線的交點(diǎn)問題,運(yùn)用拋物線的焦點(diǎn)弦求參數(shù),屬基礎(chǔ)題。2.B【答案解析】

選取向量,為基底,由向量線性運(yùn)算,求出,即可求得結(jié)果.【題目詳解】,,,,,.故選:B.【答案點(diǎn)睛】本題考查了平面向量的線性運(yùn)算,平面向量基本定理,屬于基礎(chǔ)題.3.C【答案解析】

將用向量和表示,代入可求出,再利用投影公式可得答案.【題目詳解】解:,得,則向量在上的投影為.故選:C.【答案點(diǎn)睛】本題考查向量的幾何意義,考查向量的線性運(yùn)算,將用向量和表示是關(guān)鍵,是基礎(chǔ)題.4.B【答案解析】

根據(jù)等差數(shù)列的性質(zhì)并結(jié)合已知可求出,再利用等差數(shù)列性質(zhì)可得,即可求出結(jié)果.【題目詳解】因?yàn)椋?,所以,所以,故選:B【答案點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì)及前項(xiàng)和公式,屬于基礎(chǔ)題.5.C【答案解析】

根據(jù)等比數(shù)列的下標(biāo)和性質(zhì)可求出,便可得出等比數(shù)列的公比,再根據(jù)等比數(shù)列的性質(zhì)即可求出.【題目詳解】∵,∴,又,可解得或設(shè)等比數(shù)列的公比為,則當(dāng)時(shí),,∴;當(dāng)時(shí),,∴.故選:C.【答案點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.6.D【答案解析】

利用輔助角公式化簡的解析式,再根據(jù)正弦函數(shù)的最值,求得在函數(shù)取得最小值時(shí)的值.【題目詳解】解:,其中,,,故當(dāng),即時(shí),函數(shù)取最小值,所以,故選:D【答案點(diǎn)睛】本題主要考查輔助角公式,正弦函數(shù)的最值的應(yīng)用,屬于基礎(chǔ)題.7.C【答案解析】

命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結(jié)論否定,可知命題的否定為,故選C.8.C【答案解析】

先作出函數(shù)在上的部分圖象,再作出關(guān)于原點(diǎn)對(duì)稱的圖象,分類利用圖像列出有3個(gè)交點(diǎn)時(shí)滿足的條件,解之即可.【題目詳解】先作出函數(shù)在上的部分圖象,再作出關(guān)于原點(diǎn)對(duì)稱的圖象,如圖所示,當(dāng)時(shí),對(duì)稱后的圖象不可能與在的圖象有3個(gè)交點(diǎn);當(dāng)時(shí),要使函數(shù)關(guān)于原點(diǎn)對(duì)稱后的圖象與所作的圖象有3個(gè)交點(diǎn),則,解得.故選:C.【答案點(diǎn)睛】本題考查利用函數(shù)圖象解決函數(shù)的交點(diǎn)個(gè)數(shù)問題,考查學(xué)生數(shù)形結(jié)合的思想、轉(zhuǎn)化與化歸的思想,是一道中檔題.9.C【答案解析】

A:否命題既否條件又否結(jié)論,故A錯(cuò).B:由正弦定理和邊角關(guān)系可判斷B錯(cuò).C:可判斷其逆否命題的真假,C正確.D:根據(jù)冪函數(shù)的性質(zhì)判斷D錯(cuò).【題目詳解】解:A:“若,則”的否命題是“若,則”,故A錯(cuò).B:在中,,故“”是“”成立的必要充分條件,故B錯(cuò).C:“若,則”“若,則”,故C正確.D:由冪函數(shù)在遞減,故D錯(cuò).故選:C【答案點(diǎn)睛】考查判斷命題的真假,是基礎(chǔ)題.10.A【答案解析】

根據(jù)偶次根式被開方數(shù)非負(fù)可得出關(guān)于的不等式,即可解得函數(shù)的定義域.【題目詳解】由題意可得,解得或.因此,函數(shù)的定義域?yàn)榛?故選:A.【答案點(diǎn)睛】本題考查具體函數(shù)定義域的求解,考查計(jì)算能力,屬于基礎(chǔ)題.11.A【答案解析】

由題意可知直線過定點(diǎn)即為圓心,由此得到坐標(biāo)的關(guān)系,再根據(jù)點(diǎn)差法得到直線的斜率與坐標(biāo)的關(guān)系,由此化簡并求解出離心率的取值范圍.【題目詳解】設(shè),且線過定點(diǎn)即為的圓心,因?yàn)?,所以,又因?yàn)?,所以,所以,所以,所以,所以,所以,所?故選:A.【答案點(diǎn)睛】本題考查橢圓與圓的綜合應(yīng)用,著重考查了橢圓離心率求解以及點(diǎn)差法的運(yùn)用,難度一般.通過運(yùn)用點(diǎn)差法達(dá)到“設(shè)而不求”的目的,大大簡化運(yùn)算.12.B【答案解析】

利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性,將數(shù)據(jù)和做對(duì)比,即可判斷.【題目詳解】由于,,故.故選:B.【答案點(diǎn)睛】本題考查利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性比較大小,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】

由,得出,根據(jù)兩角和與差的正弦公式和余弦公式化簡,再利用齊次式即可求出結(jié)果.【題目詳解】因?yàn)?,所以,所?故答案為:.【答案點(diǎn)睛】本題考查三角函數(shù)化簡求值,利用二倍角正切公式、兩角和與差的正弦公式和余弦公式,以及運(yùn)用齊次式求值,屬于對(duì)公式的考查以及對(duì)計(jì)算能力的考查.14.【答案解析】

用樹狀圖法列舉出所有情況,得出甲不輸?shù)慕Y(jié)果數(shù),再計(jì)算即得.【題目詳解】由題得,甲、乙兩人玩一次該游戲,共有9種情況,其中甲不輸有6種可能,故概率為.故答案為:【答案點(diǎn)睛】本題考查隨機(jī)事件的概率,是基礎(chǔ)題.15.【答案解析】

求出專業(yè)人數(shù)在、、、四個(gè)專業(yè)總?cè)藬?shù)的比例后可得.【題目詳解】由題意、、、四個(gè)不同的專業(yè)人數(shù)的比例為,故專業(yè)應(yīng)抽取的人數(shù)為.故答案為:1.【答案點(diǎn)睛】本題考查分層抽樣,根據(jù)分層抽樣的定義,在各層抽取樣本數(shù)量是按比例抽取的.16.【答案解析】

先由題意設(shè)向量的坐標(biāo),再結(jié)合平面向量數(shù)量積的運(yùn)算及不等式可得解.【題目詳解】由是單位向量.若,,設(shè),則,,又,則,則,則,又,所以,(當(dāng)或時(shí)取等)即的取值范圍是,,故答案為:,.【答案點(diǎn)睛】本題考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ).【答案解析】

(I)取的中點(diǎn),連接,通過證明四邊形為平行四邊形,證得,由此證得平面.(II)利用,證得平面,從而得到平面,由此證得平面平面.(III)作交于點(diǎn),易得面,利用棱錐的體積公式,計(jì)算出棱錐的體積.【題目詳解】(Ⅰ)取的中點(diǎn),連接,則,,故四邊形為平行四邊形.故.又面,平面,所以面.(Ⅱ)為等邊三角形,為中點(diǎn),所以.又,所以面.又,故面,所以面平面.(Ⅲ)幾何體是四棱錐,作交于點(diǎn),即面,.【答案點(diǎn)睛】本小題主要考查線面平行的證明,考查面面垂直的證明,考查四棱錐體積的求法,考查空間想象能力,所以中檔題.18.(1)的普通方程為,的直角坐標(biāo)方程為.(2)最小值為,此時(shí)【答案解析】

(1)由的參數(shù)方程消去求得的普通方程,利用極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化公式,求得的直角坐標(biāo)方程.(2)設(shè)出點(diǎn)的坐標(biāo),利用點(diǎn)到直線的距離公式求得最小值的表達(dá)式,結(jié)合三角函數(shù)的指數(shù)求得的最小值以及此時(shí)點(diǎn)的坐標(biāo).【題目詳解】(1)由題意知的參數(shù)方程為(為參數(shù))所以的普通方程為.由得,所以的直角坐標(biāo)方程為.(2)由題意,可設(shè)點(diǎn)的直角坐標(biāo)為,因?yàn)槭侵本€,所以的最小值即為到的距離,因?yàn)椋?dāng)且僅當(dāng)時(shí),取得最小值為,此時(shí)的直角坐標(biāo)為即.【答案點(diǎn)睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標(biāo)方程化為直角坐標(biāo)方程,考查利用曲線參數(shù)方程求解點(diǎn)到直線距離的最小值問題,屬于中檔題.19.另一個(gè)特征值為,對(duì)應(yīng)的一個(gè)特征向量【答案解析】

根據(jù)特征多項(xiàng)式的一個(gè)零點(diǎn)為3,可得,再回代到方程即可解出另一個(gè)特征值為,最后利用求特征向量的一般步驟,可求出其對(duì)應(yīng)的一個(gè)特征向量.【題目詳解】矩陣的特征多項(xiàng)式為:,是方程的一個(gè)根,,解得,即方程即,,可得另一個(gè)特征值為:,設(shè)對(duì)應(yīng)的一個(gè)特征向量為:則由,得得,令,則,所以矩陣另一個(gè)特征值為,對(duì)應(yīng)的一個(gè)特征向量【答案點(diǎn)睛】本題考查了矩陣的特征值以及特征向量,需掌握特征多項(xiàng)式的計(jì)算形式,屬于基礎(chǔ)題.20.(1)平行,證明見解析;(2).【答案解析】

(1)由題意及圖形的翻折規(guī)律可知應(yīng)是的一條中位線,利用線面平行的判定定理即可求證;(2)利用條件及線面垂直的判定定理可知,,則平面,在利用錐體的體積公式即可.【題目詳解】(1)證明:因翻折后、、重合,∴應(yīng)是的一條中位線,∴,∵平面,平面,∴平面;(2)解:∵,,∴面且,,,又,.【答案點(diǎn)睛】本題主要考查線面平行的判定定理,線面垂直的判定定理及錐體的體積公式,屬于基礎(chǔ)題.21.(1)見解析;(2)【答案解析】

(1)要證明,只需證明即可;(2)有3個(gè)根,可轉(zhuǎn)化為有3個(gè)根,即與有3個(gè)不同交點(diǎn),利用導(dǎo)數(shù)作出的圖象即可.【題目詳解】(1)令,則,當(dāng)時(shí),,故在上單調(diào)遞增,所以,即,所以.(2)由已知,,依題意,有3個(gè)零點(diǎn),即有3個(gè)根,顯然0不是其根,所以有3個(gè)根,令,則,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,故在單調(diào)遞減,在,上單調(diào)遞增,作出的圖象,易得.故實(shí)數(shù)的取值范圍為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論