2023學年天津市七校聯(lián)考高考數(shù)學三模試卷(含答案解析)_第1頁
2023學年天津市七校聯(lián)考高考數(shù)學三模試卷(含答案解析)_第2頁
2023學年天津市七校聯(lián)考高考數(shù)學三模試卷(含答案解析)_第3頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023高考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若集合,,則A. B. C. D.2.胡夫金字塔是底面為正方形的錐體,四個側面都是相同的等腰三角形.研究發(fā)現(xiàn),該金字塔底面周長除以倍的塔高,恰好為祖沖之發(fā)現(xiàn)的密率.設胡夫金字塔的高為,假如對胡夫金字塔進行亮化,沿其側棱和底邊布設單條燈帶,則需要燈帶的總長度約為A. B.C. D.3.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.4.已知點(m,8)在冪函數(shù)的圖象上,設,則()A.b<a<c B.a(chǎn)<b<c C.b<c<a D.a(chǎn)<c<b5.設,滿足,則的取值范圍是()A. B. C. D.6.已知雙曲線(a>0,b>0)的右焦點為F,若過點F且傾斜角為60°的直線l與雙曲線的右支有且只有一個交點,則此雙曲線的離心率e的取值范圍是()A. B.(1,2), C. D.7.關于圓周率π,數(shù)學發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的浦豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設計下面的實驗來估計的值:先請全校名同學每人隨機寫下一個都小于的正實數(shù)對;再統(tǒng)計兩數(shù)能與構成鈍角三角形三邊的數(shù)對的個數(shù);最后再根據(jù)統(tǒng)計數(shù)估計的值,那么可以估計的值約為()A. B. C. D.8.已知底面為邊長為的正方形,側棱長為的直四棱柱中,是上底面上的動點.給出以下四個結論中,正確的個數(shù)是()①與點距離為的點形成一條曲線,則該曲線的長度是;②若面,則與面所成角的正切值取值范圍是;③若,則在該四棱柱六個面上的正投影長度之和的最大值為.A. B. C. D.9.已知向量,夾角為,,,則()A.2 B.4 C. D.10.設,,則“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件11.在中,角所對的邊分別為,已知,則()A.或 B. C. D.或12.已知三棱柱()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,且,則的最小值是______.14.在的展開式中的系數(shù)為,則_______.15.已知函數(shù),則曲線在點處的切線方程為___________.16.已知向量,,若向量與向量平行,則實數(shù)___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為提供市民的健身素質,某市把四個籃球館全部轉為免費民用(1)在一次全民健身活動中,四個籃球館的使用場數(shù)如圖,用分層抽樣的方法從四場館的使用場數(shù)中依次抽取共25場,在中隨機取兩數(shù),求這兩數(shù)和的分布列和數(shù)學期望;(2)設四個籃球館一個月內各館使用次數(shù)之和為,其相應維修費用為元,根據(jù)統(tǒng)計,得到如下表的數(shù)據(jù):x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99①用最小二乘法求與的回歸直線方程;②叫做籃球館月惠值,根據(jù)①的結論,試估計這四個籃球館月惠值最大時的值參考數(shù)據(jù)和公式:,18.(12分)在直角坐標系中,曲線的標準方程為.以原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求直線的直角坐標方程;(2)若點在曲線上,點在直線上,求的最小值.19.(12分)某學校為了解全校學生的體重情況,從全校學生中隨機抽取了100人的體重數(shù)據(jù),得到如下頻率分布直方圖,以樣本的頻率作為總體的概率.(1)估計這100人體重數(shù)據(jù)的平均值和樣本方差;(結果取整數(shù),同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)(2)從全校學生中隨機抽取3名學生,記為體重在的人數(shù),求的分布列和數(shù)學期望;(3)由頻率分布直方圖可以認為,該校學生的體重近似服從正態(tài)分布.若,則認為該校學生的體重是正常的.試判斷該校學生的體重是否正常?并說明理由.20.(12分)如圖,在四棱柱中,底面為菱形,.(1)證明:平面平面;(2)若,是等邊三角形,求二面角的余弦值.21.(12分)已知集合,集合.(1)求集合;(2)若,求實數(shù)的取值范圍.22.(10分)設都是正數(shù),且,.求證:.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【答案解析】

解一元次二次不等式得或,利用集合的交集運算求得.【題目詳解】因為或,,所以,故選C.【答案點睛】本題考查集合的交運算,屬于容易題.2.D【答案解析】

設胡夫金字塔的底面邊長為,由題可得,所以,該金字塔的側棱長為,所以需要燈帶的總長度約為,故選D.3.C【答案解析】

畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可.【題目詳解】解:幾何體的直觀圖如圖,是正方體的一部分,P?ABC,正方體的棱長為2,

該幾何體的表面積:.故選C.【答案點睛】本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關鍵.4.B【答案解析】

先利用冪函數(shù)的定義求出m的值,得到冪函數(shù)解析式為f(x)=x3,在R上單調遞增,再利用冪函數(shù)f(x)的單調性,即可得到a,b,c的大小關系.【題目詳解】由冪函數(shù)的定義可知,m﹣1=1,∴m=2,∴點(2,8)在冪函數(shù)f(x)=xn上,∴2n=8,∴n=3,∴冪函數(shù)解析式為f(x)=x3,在R上單調遞增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故選:B.【答案點睛】本題主要考查了冪函數(shù)的性質,以及利用函數(shù)的單調性比較函數(shù)值大小,屬于中檔題.5.C【答案解析】

首先繪制出可行域,再繪制出目標函數(shù),根據(jù)可行域范圍求出目標函數(shù)中的取值范圍.【題目詳解】由題知,滿足,可行域如下圖所示,可知目標函數(shù)在點處取得最小值,故目標函數(shù)的最小值為,故的取值范圍是.故選:D.【答案點睛】本題主要考查了線性規(guī)劃中目標函數(shù)的取值范圍的問題,屬于基礎題.6.A【答案解析】

若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率.根據(jù)這個結論可以求出雙曲線離心率的取值范圍.【題目詳解】已知雙曲線的右焦點為,若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率,,離心率,,故選:.【答案點睛】本題考查雙曲線的性質及其應用,解題時要注意挖掘隱含條件.7.D【答案解析】

由試驗結果知對0~1之間的均勻隨機數(shù),滿足,面積為1,再計算構成鈍角三角形三邊的數(shù)對,滿足條件的面積,由幾何概型概率計算公式,得出所取的點在圓內的概率是圓的面積比正方形的面積,即可估計的值.【題目詳解】解:根據(jù)題意知,名同學取對都小于的正實數(shù)對,即,對應區(qū)域為邊長為的正方形,其面積為,若兩個正實數(shù)能與構成鈍角三角形三邊,則有,其面積;則有,解得故選:.【答案點睛】本題考查線性規(guī)劃可行域問題及隨機模擬法求圓周率的幾何概型應用問題.線性規(guī)劃可行域是一個封閉的圖形,可以直接解出可行域的面積;求解與面積有關的幾何概型時,關鍵是弄清某事件對應的面積,必要時可根據(jù)題意構造兩個變量,把變量看成點的坐標,找到試驗全部結果構成的平面圖形,以便求解.8.C【答案解析】

①與點距離為的點形成以為圓心,半徑為的圓弧,利用弧長公式,可得結論;②當在(或時,與面所成角(或的正切值為最小,當在時,與面所成角的正切值為最大,可得正切值取值范圍是;③設,,,則,即,可得在前后、左右、上下面上的正投影長,即可求出六個面上的正投影長度之和.【題目詳解】如圖:①錯誤,因為,與點距離為的點形成以為圓心,半徑為的圓弧,長度為;②正確,因為面面,所以點必須在面對角線上運動,當在(或)時,與面所成角(或)的正切值為最?。橄碌酌婷鎸蔷€的交點),當在時,與面所成角的正切值為最大,所以正切值取值范圍是;③正確,設,則,即,在前后、左右、上下面上的正投影長分別為,,,所以六個面上的正投影長度之,當且僅當在時取等號.故選:.【答案點睛】本題以命題的真假判斷為載體,考查了軌跡問題、線面角、正投影等知識點,綜合性強,屬于難題.9.A【答案解析】

根據(jù)模長計算公式和數(shù)量積運算,即可容易求得結果.【題目詳解】由于,故選:A.【答案點睛】本題考查向量的數(shù)量積運算,模長的求解,屬綜合基礎題.10.A【答案解析】

根據(jù)對數(shù)的運算分別從充分性和必要性去證明即可.【題目詳解】若,,則,可得;若,可得,無法得到,所以“”是“”的充分而不必要條件.所以本題答案為A.【答案點睛】本題考查充要條件的定義,判斷充要條件的方法是:①若為真命題且為假命題,則命題p是命題q的充分不必要條件;②若為假命題且為真命題,則命題p是命題q的必要不充分條件;③若為真命題且為真命題,則命題p是命題q的充要條件;④若為假命題且為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.11.D【答案解析】

根據(jù)正弦定理得到,化簡得到答案.【題目詳解】由,得,∴,∴或,∴或.故選:【答案點睛】本題考查了正弦定理解三角形,意在考查學生的計算能力.12.C【答案解析】因為直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點D,則OD⊥底面ABC,則O在側面BCC1B1內,矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=二、填空題:本題共4小題,每小題5分,共20分。13.1【答案解析】

先將前兩項利用基本不等式去掉,,再處理只含的算式即可.【題目詳解】解:,因為,所以,所以,當且僅當,,時等號成立,故答案為:1.【答案點睛】本題主要考查基本不等式的應用,但是由于有3個變量,導致該題不易找到思路,屬于中檔題.14.2【答案解析】

首先求出的展開項中的系數(shù),然后根據(jù)系數(shù)為即可求出的取值.【題目詳解】由題知,當時有,解得.故答案為:.【答案點睛】本題主要考查了二項式展開項的系數(shù),屬于簡單題.15.【答案解析】

根據(jù)導數(shù)的幾何意義求出切線的斜率,利用點斜式求切線方程.【題目詳解】因為,所以,又故切線方程為,整理為,故答案為:【答案點睛】本題主要考查了導數(shù)的幾何意義,切線方程,屬于容易題.16.【答案解析】

由題可得,因為向量與向量平行,所以,解得.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析,12.5(2)①②20【答案解析】

(1)運用分層抽樣,結合總場次為100,可求得的值,再運用古典概型的概率計算公式可求解果;(2)①由公式可計算的值,進而可求與的回歸直線方程;②求出,再對函數(shù)求導,結合單調性,可估計這四個籃球館月惠值最大時的值.【題目詳解】解:(1)抽樣比為,所以分別是,6,7,8,5所以兩數(shù)之和所有可能取值是:10,12,13,15,,,所以分布列為期望為(2)因為所以,,;②,設,所以當遞增,當遞減所以約惠值最大值時的值為20【答案點睛】本題考查直方圖的實際應用,涉及求概率,平均數(shù)、擬合直線和導數(shù)等問題,關鍵是要讀懂題意,屬于中檔題.18.(1)(2)【答案解析】

(1)直接利用極坐標公式計算得到答案(2)設,,根據(jù)三角函數(shù)的有界性得到答案.【題目詳解】(1)因為,所以,因為所以直線的直角坐標方程為.(2)由題意可設,則點到直線的距離.因為,所以,因為,故的最小值為.【答案點睛】本題考查了極坐標方程,參數(shù)方程,意在考查學生的計算能力和轉化能力.19.(1)60;25(2)見解析,2.1(3)可以認為該校學生的體重是正常的.見解析【答案解析】

(1)根據(jù)頻率分布直方圖可求出平均值和樣本方差;(2)由題意知服從二項分布,分別求出,,,,進而可求出分布列以及數(shù)學期望;(3)由第一問可知服從正態(tài)分布,繼而可求出的值,從而可判斷.【題目詳解】解:(1)(2)由已知可得從全校學生中隨機抽取1人,體重在的概率為0.7.隨機拍取3人,相當于3次獨立重復實驗,隨機交量服從二項分布,則,,,,所以的分布列為:01230.0270.1890.4410.343數(shù)學期望(3)由題意知服從正態(tài)分布,則,所以可以認為該校學生的體重是正常的.【答案點睛】本題考查了由頻率分布直方圖求進行數(shù)據(jù)估計,考查了二項分布,考查了正態(tài)分布.注意,統(tǒng)計類問題,如果題目中沒有特殊說明,則求出數(shù)據(jù)的精度和題目中數(shù)據(jù)的小數(shù)后位數(shù)相同.20.(1)證明見解析(2)【答案解析】

(1)根據(jù)面面垂直的判定定理可知,只需證明平面即可.由為菱形可得,連接和與的交點,由等腰三角形性質可得,即能證得平面;(2)由題意知,平面,可建立空間直角坐標系,以為坐標原點,所在直線為軸,所在直線為軸,所在直線為軸,再分別求出平面的法向量

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論