版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
IncollaborationwithMEXTTechnologyCenterUnlockingValuefromArtificialIntelligenceinManufacturingWHITEPAPERDECEMBER 2022Cover:JianFan,GettyImages–Inside:GettyImagesContentsForewordExecutivesummaryIntroduction1UnlockingvalueinmanufacturingthroughAI2SheddinglightoncommonbarrierstoindustrialAIadoption3AcollectionofAIapplicationsinmanufacturing4Astep-by-stepapproachtoimplementingscalableindustrialAIapplicationsConclusionContributorsEndnotesDisclaimerThisdocumentispublishedbytheWorldEconomicForumasacontributiontoaproject,insightareaorinteraction.Thefindings,interpretationsandconclusionsexpressedhereinarearesultofacollaborativeprocessfacilitatedandendorsedbytheWorldEconomicForumbutwhoseresultsdonotnecessarilyrepresenttheviewsoftheWorldEconomicForum,northeentiretyofitsMembers,Partnersorotherstakeholders.?2022WorldEconomicForum.Allrightsreserved.Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,includingphotocopyingandrecording,orbyanyinformationstorageandretrievalsystem.UnlockingValuefromArtificialIntelligenceinManufacturing 2December2022 UnlockingValuefromArtificialIntelligenceinManufacturingForeword?zgürBurakAkkolChairman,TurkishEmployers’AssociationofMetalIndustriesTürkiyehasestablisheditselfasakeyglobalplayerinadvancedmanufacturingandaimstoboostitspositionthroughFourthIndustrialRevolutiontechnologies.Inrecentdecades,thecountryhasmadesignificanteffortstopositionitselfasaglobalinnovationhub,excellingindevelopingstate-of-the-arttechnologiesinground-breakingcompaniesinvariousfields.Artificialintelligence(AI)technologyapplicationsarepartofthiseffort.Inprinciple,AIcouldunlockmorethan$13trillionintheglobaleconomyandboostGDPby2%peryear.1However,companiesstruggletotapintothevaluethatAIapplicationscancreate.ThispaperseekstouncoverthehiddenpotentialofAIinthemanufacturingsectorandtherespectiveend-to-endsystemsbyprovidingpracticalusecasesandcriticalenablerstohelpharnessitspotential.Coupledwiththeenergycrisisandmaterialshortagesfacingtheworld,manufacturingplayersneedtogobeyondtraditionaloperatingmethodstodriveefficiencyandsustainability.Thetwinchallengesoftechnologicalprogressandsocio-politicaldistresscallfornewformsofcooperationthatrespondtoheighteneddemandforlocalizationwhilerecognizingthedriversofconnectivitythatshapeglobalimpact.Acknowledgingthis,theCentrefortheFourthIndustrialRevolutioninTürkiye–mandatedbythe
JeremyJurgensManagingDirector,WorldEconomicForumMinistryofIndustryandTechnologyandestablishedbytheTurkishEmployers’AssociationofMetalIndustries(MESS)–joinedtheWorldEconomicForum’sCentrefortheFourthIndustrialRevolutionNetwork,theforemostplatformhelpingleadersanticipateemergingtechnologiesanddrivetheirinclusiveandsustainableadoption.Thenetworklinkson-the-groundexperienceandactionwithglobalnetwork-basedcollaboration,learningandscaling.ThiswhitepaperisanoutputoftheongoingpartnershipbetweentheForum’sPlatformforShapingtheFutureofAdvancedManufacturingandValueChainsandPlatformforShapingtheFutureofTechnologyGovernance:ArtificialIntelligenceandMachineLearning,theCentrefortheFourthIndustrialRevolutionAffiliateinTürkiyeandMESS.Ithighlightscasestudiesfromorganizationsontheimpact,feasibilityandscalabilityofAIinmanufacturing.Itidentifiesseveralopportunitiesandlessonsfromthecommunityonhowtoincreaseoperationalefficiency,sustainabilityandworkforceengagementinmanufacturingandvaluechainsbyusingAI.Wehopethisreportwillprovidedecision-makerswithabetterunderstandingofhowtounlocktheuntappedpotentialofindustrialartificialintelligence(AI).Welookforwardtocollaboratingwithyoutodeploythesetechnologiesresponsibly.UnlockingValuefromArtificialIntelligenceinManufacturing 3ExecutivesummaryRecentglobaldevelopmentsandanever-growinglistofshocksanddisruptionshaveputfurtherstrainonalreadyshakenglobalvaluechains.Thecomplexityofcurrentchallengesimpactingmanufacturingandvaluechainscallsfortheneedtogobeyondthetraditionalmeansofdrivingproductivitytouncoverthenextwaveofvalueforbusinesses,theworkforceandtheenvironment.Artificialintelligence(AI)isacrucialenablerofindustrytransformation,openingnewwaystoaddressbusinessproblemsandunlockinnovationwhiledrivingoperationalperformance,sustainabilityandinclusion.EventhoughtheimpactofAIapplicationsonmanufacturingprocessesisknown,thefullopportunityfromtheirdeploymentisstilltobeuncoveredduetoanumberoforganizationalandtechnicalroadblocks.Recognizingthisneed,theCentrefortheFourthIndustrialRevolutionTürkiye,togetherwiththeWorldEconomicForum’sPlatformforShapingtheFutureofAdvancedManufacturingandValueChainsandPlatformforShapingtheFutureofTechnologyGovernance:ArtificialIntelligenceandMachineLearning,convenedindustry,technologyandacademicexpertstoshedlightonthesechallengesandproposeastep-by-stepapproachtoovercomethem.TheconsultationsrevealedsixmainchallengeshinderingtheadoptionandscalingofAIapplicationsinmanufacturing:AmismatchbetweenAIcapabilitiesandoperationalneedsTheabsenceofastrategicapproachandleadershipcommunicationInsufficientskillsattheintersectionofAIandoperationsDataavailabilityandtheabsenceofadatagovernancestructureAlackofexplainableAImodelsinmanufacturingSignificantcustomizationeffortsacrossmanufacturingusecases
Theconsultationsshowthatleadingmanufacturershavesuccessfullyovercomethechallengesmentionedabove,implementingavarietyofAIapplicationsandachievingapositiveimpactonoperationalperformance,sustainabilityandworkforceengagement,mainlyinsixareas:healthandsafety,quality,maintenance,productionprocesses,thesupplychain,andenergymanagement.WhileopportunitiesenabledbyAIinmanufacturingarepromisingandattractingmanyleaders,organizationsarelookingforacommonframeworkthatoutlineshowtoimplementAIsolutionsandensureasuccessfulreturnoninvestment.Basedontheconsultations,thiswhitepaperpresentsonestep-by-stepprocessasanexampleofhowitispossibletoovercomebarriers,usingtheAINavigator2developedbytheINCInventionCenterasareference:Phase0:Initiationtobuildthefundamentals–strategy,dataandworkforcePhase1:Ideationtoidentifypotentialusecasesandconductapre-selectionPhase2:AssessmenttoselectusecasesandidentifyprioritiesviagapanalysisPhase3:FeasibilitytocompleteallrequiredtestsandstudiesPhase4:Implementation,whichrequiresiterationandpilotingusingagileprojectmanagementMovingforward,theWorldEconomicForumandtheCentrefortheFourthIndustrialRevolutionTürkiyewillcontinuetoworkcloselywithstakeholdersintheCentrefortheFourthIndustrialRevolutionNetworkandacrossindustriestoacceleratethejourneytocapturevaluefromAIinmanufacturingglobally.ItwilloffertheTurkishEmployers’AssociationofMetalIndustries(MESS)TechnologyCentreasauniquetestingandcollaborationsystemforbusinessestopilotnewAIapplicationsandfosteracollaborativeapproachamongadiversegroupofstakeholderstoensuretherightAIcapabilitiesarebuiltinmanufacturingandrolledoutworldwide.UnlockingValuefromArtificialIntelligenceinManufacturing 4IntroductionCompaniesacrossvaluechainsarenowfacinganenergycrisisandmaterialandkeycomponentshortages,evenastheyarestillrecoveringfromandadaptingtoCOVID-19impacts.Thecomplexityofthechallengesimpactingoperationscallsfortheneedtogobeyondthetraditionalmeansofdrivingproductivitytouncoverthenextwaveofvalueandaddresssustainabilityandworkforcechallenges.Artificialintelligence(AI)canenableanewerainthedigitaltransformationjourney,offeringtremendouspotentialtotransformindustriestogaingreaterefficiency,sustainabilityandworkforceengagementbygeneratingnewinsightsfromlargeamountsofdata.However,despitethispromisingvaluecreationpotential,thedeploymentofAIinmanufacturingandvaluechainsisstillbelowexpectedlevels.Basedonaglobalsurveyconductedoverthelastfouryearsofmorethan3,000companiesacrossindustriesandgeographies,agrowingnumberofcompaniesrecognizethebusinessimperativetoimprovetheirAIcompetencies:–70%ofrespondentsunderstandhowAIcangeneratebusinessvalue–59%haveanAIstrategyinplace–57%affirmthattheircompaniesarepilotingordeployingAI.Despitethesetrends,only1in10companiesbelievetheygeneratesignificantfinancialbenefitswithAI.3
WhilemanufacturersacknowledgetheimportanceandurgencyofembeddingAIintheirprocessesandwhileleadingcompanieshavealreadyinternalizeditintheirbusinessprocesses,manyarebecomingdisillusionedwiththeireffortstocapturevaluefromitandlagindevelopingtherightAIcapabilities.UnderstandingthepurposeandroleofAIiskeytosolvingmanufacturingchallenges.Withaproblem-orientedapproach,AIeffortscanbelinkedtoclearbusinesstargets,givingbusinessunitsandbusinessfunctionsajointinterestinmakingthetransformationsuccessful.4ThiswhitepapershedslightonthebenefitsthatcanbeachievedthroughindustrialAIandthesuccessfulAIapplicationsimplementedacrossindustries,lessonslearnedandtangibleimpacts.ConsultationsconductedwiththemultistakeholderinitiativecommunityfindthatindustrialAIhelpspeopleworkinasmarter,saferandmoreefficientway.However,tounlockitsfullpotential,companiesrequireanunderstandingofcurrentbarrierstoadoptionandastructuredapproachtoovercomethem.Therefore,thispaperalsopresentsoneexampleofastep-by-stepguidetosuccessfullyimplementingscalableindustrialAIusecases.UnlockingValuefromArtificialIntelligenceinManufacturing 5UnlockingvalueinmanufacturingthroughAIAIapplicationsinmanufacturinghelpincreaseoperationalperformance,drivethesustainabilityagendaandempowertheworkforce.Theartificialintelligence(AI)revolutionallowstheconversionoflargeamountsofdataintoactionableinsightsandpredictionsthatcanprovideimpetustodata-drivenprocesses.ManufacturingcompaniescapturevaluefromAIusingdifferentmechanisms,themostcommonbeingeliminatingredundantwork,solvingexistingproblemsandrevealinghiddenvaluebyanalysingandrecognizingpatternsindata.AIisappliedtoaugmenttaskssuchasclassification,continuousestimation,clustering,optimization,anomalydetection,rankings,recommendationsanddatagenerationtosolveindustrialproblems.5ConsultationswithseniorexecutivesfromtheWorldEconomicForum’sPlatformforShapingtheFutureofAdvancedManufacturingandValueChainsandPlatformforShapingtheFutureofTechnologyGovernance:ArtificialIntelligenceandMachineLearning,aswellasmembersandpartnersoftheCentrefortheFourthIndustrialRevolution
Türkiye,findthatAIcanhelpdriveastep-changeinmanufacturing,yieldingsignificantbenefitsinthreecategories(figure1):–Operationalperformancebyautomatingandoptimizingroutineprocessesandtasks,increasingproductivityandoperationalefficiencies,improvingquality(e.g.reducingdefects,forecastingunwantedfailures)andoptimizingproductionparameters–Sustainabilitybyoptimizingmaterialandenergyusage,increasingenergyefficiencies,reducingscrapratesandextendingmachinelifespans–Workforceaugmentationbyguidingthedecision-makingprocessandparametersetting,enhancingtheaccuracyofpredictionsandforecasting,reducingrepetitivetasksandincreasinghuman-robotinteractionsUnlockingValuefromArtificialIntelligenceinManufacturing 6FIGURE1 DimensionsofvaluecreationwithAIinmanufacturingOperationalperformancePerformance(e.g.yieldoptimization)Throughput(e.g.fewerunwantedbreakdowns,decreasedleadtime)Quality(e.g.fewerprocessdefectsandfailurerates)Businessuptime(ductivetimeandcapacity)WorkforceaugmentationDecision-makingandplanningsupportCollaborationPredictionandforecastingaccuracyTaskautomationRisk(e.g.feedbackmechanismtoavoidincidentsandalarms)SustainabilityMaterialefficiencyEnergyefficiency(e.g.energysavingsandthermalefficiency)MachinelifetimeScraprateandusedmaterialUnlockingValuefromArtificialIntelligenceinManufacturing 7SheddinglightoncommonbarrierstoindustrialAIadoptionImplementingAIsolutionsrequirescontinuousprojectmanagementefforts,expectationmanagementandthenecessaryresources.Despitethispotential,companieshavenotyetfullyrealizedthevisionofAI-poweredmanufacturingsystems.TounlocktheuntappedvalueofindustrialAI,pinpointingthesourceofacompany’sstrugglesanddefiningtheroadblocksopenanewpathtothinkthroughandderivetherightsolutionstoovercomethem.AsthebarrierstoAIadoptionstemmainlyfromorganizational,strategicandtechnicalFIGURE2 BarrierstoAIadoptioninmanufacturing
components,understandingthemwillhelpidentifyapathwaytoimplementscalableAIapplications.Consultationswiththecommunityofover35senioroperationsexecutives,technologyexpertsandacademicshaveidentifiedsixchallengeshinderingtheadoptionofAIinmanufacturingandvaluechains(figure2).MismatchbetweenAIAbsenceofastrategicInsufficientskillsatthecapabilitiesandoperationalapproachandleadershipintersectionofAIandneedscommunicationoperationsDataavailabilityandLackofexplainableAISignificantcustomizationabsenceofadatamodelsinmanufacturingeffortsacrossgovernancestructuremanufacturingusecasesUnlockingValuefromArtificialIntelligenceinManufacturing 8MismatchbetweenAIcapabilitiesandoperationalneedsManufacturershaveoftenselectedAIprojectsbasedonexistingtechnicalcapabilitiesinsteadoffocusingontheimpactonbusinessoperations.ThematchbetweenbusinesspainpointsandAItechnologiesisnotalwaysthoroughlyconsidered.Therefore,AIsolutionsmaybetechnicallyfeasiblebutfailtosolvearelevant,impactfulproblemin
operations.Thiscausesamismatchofexpectationsandhinderstheirwideradoptioninmanufacturing.Buildingasolidbusinesscasewithaproblem-orientedapproachthatclearlydefinesbusinessneedsandevaluatingthevalueofanAIsolutioncomparedtoalternativesolutionsarethefirststepsinovercomingthatbarriertoadoptionandscale.AbsenceofastrategicapproachandleadershipcommunicationAclearcompany-wideAIstrategyandcommunicationplanareoftenignored.Withouttherightsponsorsandcommittedleaderstostartthedialogueandcollectthebuy-infromend-users,theonboardingofAIapplicationsacrossthecompanycan’toccurdue
toworkforcereluctance.AsAIischangingthewaysofworking,communicatingthestrategicapproach,benefitsandnewprocessescanhelpincreaseend-users’willingnesstoembraceitintheirroutines.InsufficientskillsattheintersectionofAIandoperationsExternalconsultantsorinformationtechnology(IT)expertswhohavealimitedunderstandingofthemanufacturingrequirementsontheshopflooroftenleadAIprojects.However,tobesuccessful,AIapplicationsrequiredevelopment
andimplementationbycross-functionalteamswithdiverseexpertiseattheconvergenceofIT,operationaltechnology(OT),dataandAItechnologies.Thisrequiresupskillingtheworkforceandattractingnewtalentinmanufacturing.UnlockingValuefromArtificialIntelligenceinManufacturing 9DataavailabilityandtheabsenceofadatagovernancestructureApplyingmachinelearningmodelsrequirestrainingonlargeamountsofdatatorecognizepatternsandrelationships.6However,manufacturingcompaniesoftenrelyonsmalldatasetsandfragmenteddata,hinderingtheaccuracyoftheresultinginsights.Evenwhenavailable,thesedatasetsmaynotrepresentappropriatefailurecasesorrelevantprocesssituationsandaremostlynotinteroperable.
Creatingasinglesourceofinformationensuresthatbusinessesoperatebasedonstandardized,relevantdataacrosstheorganization.Toovercomethischallenge,sharingdataacrosscompanies’boundariescansupportjointeffortstoadoptartificialintelligencetechniquesinthemanufacturingsectorandrely,inturn,onasetoforganizationalandtechnologicalsuccessfactors.7LackofexplainableAImodelsinmanufacturingTheperceptionofAImodelsascomplex,non-transparentanduninterpretablesystemshinderstheirdeployment.ManufacturersneedAImodelsthatareeitheropenandtransparenttobuildtrustinthepredictionsandspecificresultsorinterpretablefordomainexpertstoacceptthem.AI-providedpredictionsneedtobemeaningful,explainable
andaccurateandhaveawarningmechanisminplacetominimizerisks.ExplainableAItoolsandtechniquesallowexpertstoobtainjustificationsfortheirresultsinaformatthatmanufacturinguserscanunderstand.ThegreatertheconfidenceintheAI-poweredoutput,thefasterandmorewidelyAIdeploymentcanhappen.SignificantcustomizationeffortsacrossmanufacturingusecasesFactoriesarecomplexengineeredsystemsandAImodelsneedconfigurationtobeadaptedtoeachprocessandconformtoitsconstraints.Hence,itisnotpossibletosimplyapplytrainedAImodelsorpipelinesfromonemanufacturingusecasetoanother.Thedesignofthemachinelearningpipelineandthepre-processing,trainingand
testingofAImodelsstillneedmanualinterventionforcustomization,whichisnotyetfullyautomated.Additionally,industrialcompaniesstruggletofindcommerciallyavailablehardwareandsoftwarewithoff-the-shelfAIfeaturesthatrequireminorcustomization.Sheddinglightonthesechallengesandunderstandingthemcanhelpidentifytherightsolutionsandapproachestoovercomethem.UnlockingValuefromArtificialIntelligenceinManufacturing 10AcollectionofAIapplicationsinmanufacturingAIapplicationscanboostoperationalperformanceandleadtoapositiveimpactonsustainabilityandworkforceengagement.Consultationswithover35senioroperationsexecutivesandtechnologyexpertsfindthatleadingmanufacturingcompanieshavesuccessfullymanagedtoapproachandovercomethechallengesmentionedabovebystartingwiththeirbusinessneeds,outliningaclearstrategy,buildingcross-functionalcapabilitiesandputtingastrongerfocusondatagovernance,andselectingAImodelsthatmeettheirneeds.TheyhaveimplementedavarietyofAIapplicationsthathaveboostedtheiroperationalperformanceandledtoapositiveimpactonsustainabilityandworkforceengagement.
ToillustratethepotentialandfeasibilityofAIinmanufacturing,thecreationofanindustrialAIusecaselibrarywithinputfromthecommunityhasstarted.The23usecasescollectedacrossdifferentindustriescoversixmainapplicationareas:healthandsafety,quality,maintenance,productionprocess,supplychains,andenergymanagement(figure3).UnlockingValuefromArtificialIntelligenceinManufacturing 11FIGURE3 LeadingmanufacturersareimplementingavarietyofAIapplications1AIinmanufacturingusecases65Source:CompanyinterviewsEnergymanagementSupplychains–Energyoptimization–Futuredemandandprice–Electricitydemandforecastingforecasting–Heatingandcoolingoptimization–Supplychaincontroltower–Warrantyandservicemanagement
234Productionprocess–Processoptimization–Linebalancing–Productdesignanddevelopment–Processparameteroptimization–Productionplanning/decisionsupport
Healthandsafety–Employeehealth&safety:incidentprevention–Processsafety:advancedalarmanalyticsQuality–Qualityinspectioninassembly–Qualityassurance/defectinspection–Qualitytesting–QualitypredictionMaintenance–Machinehealthmonitoring:predictivemaintenance–MaintenanceplanningTheusecasescollectedprovidevaluableinsightsindicatingthebusinessneed,thesolutionimplementedandtheimpactachieved.Theapplicationsshowthatthereturnoninvestment(ROI)ispositiveandthepaybackperiodofthe
investmentsisusuallytangiblewithin1-2years.AfterpilotingtheAIapplicationsinonedivision,manufacturingcompanieseitherhavealreadydeployedtomultipledivisionsorhavethevisiontoscale.UnlockingValuefromArtificialIntelligenceinManufacturing 12TABLE1AcollectionofAIinmanufacturingusecasesUsecaseCompanySectorAIapplicationImpactModeldesignedasanexperiencedoperator/engineer–Totaltimeofalarmfloodsincontinuousestimationanddecreasedby40%classificationofalarms,detection–Numberofalarmsofnuisancealarms,alarmfloodProcesssafety:decreasedby50%Tüpra?,analysisandrecommendationadvancedEnergy–Timeefficiency:AlarmTürkiyeofbetterconfigurations.Rootalarmanalyticsrationalizationmeetingscauses,next-bestactionsandshortenedfrom4hourssafetysetpointsextractedfromtheto30minuteshistoricaldatathroughbasic&descriptiveanalyticsanddatasciencepre-processtechniquesHealthImagerecognitionbymonitoring–UnsafesituationsandEmployeetheshopfloorwithexistingactionsreducedby70-cameras,receivingreal-time80%health&Intenseye,Manufacturingalertnotificationsandenhancingsafety:incidentUSA–Withasaferenvironment,employeehealthandsafetypreventionamoreproductive(EHS)toeliminatelife-alteringworkforcewithincreasedinjuriesbusinessuptimecreatedExaminingtheeffective–Upto40%savingsachievedinenergyuseparametersontheframes–ScrapratereducedwhileReal-timespotMarturbeingweldedinroboticspotensuringsustainabilityinweldqualityFompak,Automotiveweldstations(weldquality)productionpredictionTürkiyeandpredictingthespotnugget–Costsreducedby60%diameterrealizedinlineinrealbypreventingtheuseoftimeexcessweldingmaterialsVisualinspectiontoensure–ProductivityincreasedDetectionofthecoatingqualityisgoodbyby11%Bosch,checkingpartsandsearchingfor–15millionpartscheckedcarboncoatingAutomotiveTürkiyecoatingdefectsinfourdifferenthadnoincidentsdefectsclasses:scratches,damages,blackinblack,silverQualityOptimizingqualityinspectionofcustomizedproductsbyQualitydeployingcloudservicesand–ProductivityincreasedbyassuranceafederatedlearningapproachHuawei,30-40%withfederatedProduction(localdatacollected,globalChina–Leadtimereducedlearninginoptimuminterpolatedandinturncontrolsharedbacktoalllocalfacilitieswithoutdisclosingsensibleproductorprocessdata)ExplainablecomputervisionmethodsusedtosupportfactoryQualityworkersindetectingassemblyinspectionEthonAI,ElectronicserrorsonprintedcircuitboardsinassemblySwitzerland(e.g.missing,faulty,orwrongverificationcomponents)viaahuman-AIinterface(camerasystemwithlivefeedback)
–10xlessimplementationeffortexpended–TrustworthinessofthesystemincreasedwiththeexplainablemodelUnlockingValuefromArtificialIntelligenceinManufacturing 13UsecaseCompanySectorAIapplicationImpactVisualinspectionoffibreratioin–ReportpreparationtimeforcustomercomplaintsyarncontentusingmicroscopicKarsu,andanalysisexpectedtoQualitytestingTextileimagestocheckproductionTürkiyedecreaseby90%qualityandtoanalysecustomer–ExpertrequirementcomplaintsforthesubjectwillbeeliminatedQuality
VisualinspectionofthequalityQualityK?rberofpharmaceuticalswhileAIinspectionrecognizespatternsinsteadofDigital,Pharmaceuticalsindrug-andmeasuringphysicalimagevalues,Germanypatientsafetywhichdecreasesthefalse-rejectofproducts
–Reductionoffalse-rejectratebyanaverageof88%–Detectionrateincreasedbyanaverageof38%–Approximately2xfastertime-to-marketachieved(transferability)invisionsetupAnAIenginethatpredictsthe–MachinecapacityPredictiveSchneiderdemagnetizationvoltagetoincreasedElectric,Electronicsreducethenumberofiterations–CapexinvestmentreducedqualityFranceduringrelaytestsinresidual–RejectionsreducedcurrentdeviceproductrangeThroughcombinationofdigitaltwinandinnovativeAI,processObeikananomalyconditionsanddriversQualityDigitalChemicalsdetectedpredictionSolutions,SaudiArabiaStatisticalprocesscontrolalgorithm,aprovenapproachofqualitycontrol,used
–Productivityandqualitysustainabilityincreased–OverallequipmenteffectivenessinPETlinesimprovedby20%–CustomercomplaintsreducedProductionprocess
Providingautomatedsoftwareto–Alloyusereducedby9%takepreventiveactionsearlyintheatsteelmillsProcessFeroLabs,SteelproductionprocesswithexplainableoptimizationUSAAImodelstoreducerawmaterial–FailurerateeliminateduseandminimizecostsandemissionsduringsteelproductionAI-basedvideoanalyticstolabel–Productivityincreasedby25%theactionsofmanualtasks–ByincreasingqualityandKhenda,toeliminateoperator-relatedLinebalancingAutomotiveefficiency,errorcostsTürkiyeerrorsandimprovemanualeliminatedandwastemanufacturingprocessesandanddefectiveproductsoptimizelinebalancingavoidedGeneratinginsightsintothecomplexinteractionsbetweenhundredsofprocessparametersProductionDataprophet,andtheirimpactonfinalqualityparameterFoundrybyusingdeeplearningalgorithmsSouthAfricaoptimizationApplicationthenprescribesnext-beststeptooptimizeproductionwithoutpoorquality
–Defectsreducedto0%froma6%ofhistoricaldefectrate–Numberofqualitystopsreducedfrom81to20perweekUnlockingValuefromArtificialIntelligenceinManufacturing 14UsecaseCompanySectorAIapplicationImpactProductionprocess
AdvanceddecisionsupportAr?elik,HomeAppliancesystemonTürkiyeperformancetestProcessGEP,USAChemicalsmanagement
Improvingcoolingtestperformanceindifferentanddynamicallychangingclimaticconditionstoshortenthetestdurationbyanin-housedecision-makingsystembasedonAIandmachinelearning(ML)ImplementingAI-enabledprocesscontrolstomanagecatalystingestionbasedonpressureandtemperaturechangesinthereactorandtomanagethetransferrates
–Servicecallrateimprovedby15.3%.–17.8%oftestcapacityincreasedbydecreas
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度木箱紙箱包裝印刷一體化服務(wù)合同4篇
- 二零二五年度綜藝節(jié)目編劇服務(wù)與演員出演合同6篇
- 二零二五版養(yǎng)老社區(qū)綜合服務(wù)與管理合同3篇
- 2025年度出口合同模板(含出口許可證辦理要求)4篇
- 二零二四年度智能語音識別系統(tǒng)軟件產(chǎn)品定制與銷售合同3篇
- 二零二五版農(nóng)家院休閑農(nóng)業(yè)園租賃管理服務(wù)合同4篇
- 2025年度個人貨車租用合同數(shù)據(jù)安全及隱私保護(hù)協(xié)議2篇
- 二零二五版苗木種植基地土地流轉(zhuǎn)合同樣本4篇
- 二零二五年度船運(yùn)貨物貿(mào)易船舶租賃與運(yùn)營合同2篇
- 二零二五年度承臺基礎(chǔ)施工綠色施工合同4篇
- 優(yōu)佳學(xué)案七年級上冊歷史
- 鋁箔行業(yè)海外分析
- 紀(jì)委辦案安全培訓(xùn)課件
- 超市連鎖行業(yè)招商策劃
- 醫(yī)藥高等數(shù)學(xué)智慧樹知到課后章節(jié)答案2023年下浙江中醫(yī)藥大學(xué)
- 城市道路智慧路燈項目 投標(biāo)方案(技術(shù)標(biāo))
- 初中英語-Unit2 My dream job(writing)教學(xué)設(shè)計學(xué)情分析教材分析課后反思
- 【公司利潤質(zhì)量研究國內(nèi)外文獻(xiàn)綜述3400字】
- 工行全國地區(qū)碼
- 新疆2022年中考物理試卷及答案
- 地暖工程監(jiān)理實施細(xì)則
評論
0/150
提交評論