版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
外文原文:UsinganAdvancedVehicleSimulator(ADVISOR)toGuide:HybridVehiclePropulsionSystemDevelopmentKeithB.WipkeNationalRenewableEnergyLaboratory,Golden,COMatthewR.CuddyAbstractAnadvancedvehiclesimulatormodelcalledADVISORhasbeendevelopedattheNationalRenewableEnergyLaboratorytoallowsystem-levelanalysisandtrade-offstudiesofadvancedvehicles.BecauseofADVISOR'sfastexecutionspeedandtheopenprogrammingenvironmentofMATLAB/Simulink,thesimulatorisideallysuitedfordoingparametricstudiestomapoutthedesignspaceofpotentialhighfueleconomyvehicles(3X)consistentwiththegoalsofthePartnershipforNewGenerationofVehicles(PNGV).Fiveseparatevehicleconfigurationshavebeenmodeledincluding3lightweightvehicles(parallel,series,andconventionaldrivetrains)alongwith2vehicleswith1996vehicleweights(parallelandconventionaldrivetrains).Thesensitivityofeachvehicle'sfueleconomytocriticalvehicleparametersisthenexaminedandregionsofinterestforthevehiclesmappedoutthroughparametricstudies.Usingthesimulationresultsforthesevehicles,theeffectofhybridizationisisolatedandanalyzedandthetrade-offsbetweenseriesandparalleldesignsareillustrated.AdvancedVehicleSimulationModel:ADVISORInNovemberof1994,NREL'sCenterforTransportationTechnologiesandSystemscreatedasimulationmodelforadvancedvehiclescalledADVISOR(ADvancedVehIcleSimulatOR)inthegraphical,object-orientedprogramminglanguageofSimulink/MATLABfromtheMathWorks,Inc.ThemodelwascreatedinsupportofthehybridvehiclesubcontractswiththeautoindustryfortheDepartmentofEnergy.ADVISORapproximatesthecontinuousbehaviorofavehicleasaseriesofdiscretestepsduringeachofwhichthecomponentsareassumedtobeatsteadystate.Thatis,ateachtimestep,theeffectsofchangingcurrent,voltage,torque,andRPMareneglected.Thisallowsefficiencyorpowerlosstables,whicharegeneratedbytestingadrivetraincomponentatafixedtorqueandRPM(andcurrentandvoltage,ifapplicable),tobeusedtorelatethepowerdemandsofthecomponentsateachtimestep.AsignificantadvantageofusingamodelthatisintheSimulink/MATLABenvironmentistheflexibilityandeaseofchangingthemodel,suchasreplacingonecontrolstrategyorregenerativebrakingalgorithmwithanother.MATLABalsoallowseasyplottingofresultsthatmakesdetailedanalysisofvehicleconfigurationspossible.ADVISORisdrivenbytheinputdrivingprofileswhichcanbetheclassicspeedvs.time,suchasthefederalurbandrivingschedule(FUDS),oraspeedandgradevs.timedrivingprofile.Withagivendrivingprofilegoal,ADVISORthenworksitswaybackwardsfromtherequiredvehicleandwheelspeedstotherequiredtorquesandspeedsofeachcomponentbetweenthewheelsandtheenergysource,whichiseitherfuelfromthehybridpowerunit(HPU)orelectricityfromthebatteries.Limitsforeachofthecomponentsareincluded,sotheactualspeedvs.timeprofilecomputedistheonethatiswithinthelimitsofallcomponentsandincludesallcomponentlossesandvehicledrag.Figure1showsthetopleveloftheserieshybridmodelinADVISOR.Figure1:ToplevelofADVISORserieshybridmodelValidationofthemodelandcorrelationwithothervehiclesimulationsisextremelyimportanttoestablishthecredibilityofamodel.Throughsubcontractswithuniversityteamswhohavebuiltandtestedsuccessfulhybridvehicles,NRELhasacquiredmanyvalidatedcomponentmodelsthatincludequantifieduncertainties,increasingthecredibilityofthatdata.Finalvehicle-levelvalidationincludingdetaileduncertaintyanalysisisscheduledtobecompletedinSeptember,1996.Inthemeantime,correlationwithestablishedpublicvehiclemodelshasbeenperformed,inadditiontosomecorrelationswithproprietarymodelsintheautomotiveindustry.Basedonthesecomparisons,ADVISORappearstobewithin2%ofmostmodelsbasedonidenticalinputs.Thus,minimaluncertaintyinAdvisor’sresultsisintroducedbyitsalgorithms;uncertaintyintheinputdatawillbetheprimarysourceoftheuncertaintyinAdvisor’sresults.Ttherefirreofallinputdataforthesimulationsinthisanalysisisspecifiedbelow.VehiclesModeledandAssumptionsFivedifferentvehicleconfigurationsweremodeled.BothseriesandparallelhybridswithverylowmassesandhighlyEfficientdrivetrainsweremodeledinordertoobtainPNGV-likehybridvehiclesthatachievedacombinedcity/highwayfueleconomyof80mpg.Thesearereferredtoas"3X"vehiclesbecausetheyget3timesthefueleconomyofaconventionalvehiclewithacombinedcity/highwayfueleconomyof26.6mpg(PNGVbaseline,PNGVProgramPlan).Athirdconfigurationwasobtainedbyunhybridizingthosevehiclestocreateaconventionalvehicle.Thefourthandfifthvehicleconfigurationswerecreatedbytakingaconventionalvehicle(atroughly1.45Xduetoadieselengineandmanualtransmission)andmakingitaparallelhybrid.Table1providesthekeydifferencesbetweenthefivevehicleconfigurationsmodeledandthebaselinefueleconomyforeachvehicleconfiguration,whileTable2givesthesourcesfortheinputdata.Table1:KeyParameterValuesforVehicleConfigurationsModeledVehicleConfig3XParallelHybrid3XSeriesHybrid2.46XLightWt(nonhybrid)1.45XConv.(diesel)1.70XParallelHybridMass(kg)1000.0001000.0001000.0001611.0001611.000BatteryCap.(kWh)1.1003.700n/an/a1.800PeakHPUPower(kW)31.00030.00047.00077.00052.000PeakMotorPower(kW)12.00041.000n/an/a20.0000.4000.4000.4000.7000.700Crollingresistance0.0080.0080.0080.0110.011City(mpg)73.80072.30056.10033.80040.700ScalingHighway(mpg)94.30093.60082.10047.00052.800Combined(mpg)81.80080.50065.40038.70045.300Sinceaccelerationtimefrom0-60mphandgradeabilityat55mphareperformancerequirementsforallvehicles,theHPU,whichinthiscaseisanAudi5-cylinderturbodieselengine,andtheelectricmotorhavebothbeensizedsothatthevehiclesmeettheseperformancetargets.Onemajorassumptioninthescalingofthesetwocomponentsisthatthetorque/speedpowerlossmaps(equivalentinformationasinefficiencymaps)canbescaledbysimplyscalingthetorquescaleonthemap.Itisknownthatthisisnotthemostaccuratescalingmethod,butwasusedforlackofanavailableandjustifiablescalingalgorithm.MassThesourceofthedataforthemassoftheconventional1.45XconventionalvehicleandthehybridizedversionofthisvehiclecamefromtheOTAreportforacurrentFordTaurus.Forthe3Xvehicles,themassof1000kgisroughlythemassforthe"AdvancedConventional"vehiclefortheyear2015fromtheOTAreportinwhichalmostallmetalcomponentsaremadeofaluminum.Thisiscertainlyasignificantreductioninmassfromtoday'svehicles;thisvaluewasusedtoallowtheefficienciesforothercomponentsandparameterstostaywithintoday'stechnologiesoratleastthePNGVgoals.HybridControlStrategiesTheserieshybridusesasimple"thermostat"on/offstrategytooperatetheHPU,withtheHPUoperatingatafixedtorqueandspeedpointwhenitison.Inthisstudy,theHPUturnsonwhenthebatteries'state-of-charge(SOC)dropsbelow40%andturnsoffwhentheSOCrisesabove80%.Theparallelhybridcontrolstrategyhastheeffectofusingthebatteriesforhighlytransientvehiclelaunches,unlessthebatteriesaresolowthattheyneedtobecharged.Itcanbedefinedasfollows,with"high"SOCdefinedas60%and"low"SOCdefinedas50%:TheHPUdoesnotidle(itturnsoffwhennotneeded).Themotorperformsregenerativebrakingregardlessofthebatteries'SOC.TheHPUgenerallyprovidesthepowernecessarytomeetthetraceandthemotorgenerallyhelpsifnecessary,withthefollowingexceptions:whenthebatteries'SOCislowtheHPUlaunchesthevehicleandprovidesextratorquetorechargethebatteries,andwhenthebatteries'SOCishigh,theelectricmotoronlylaunchesthevehicleandno
HPU-chargingofthebatteriesoccurs.Table2:SourcesofDataforSimulationInputsandPerformanceRequirementsVehicleParameterValuesUsedSourceofInputDatacdA0.4,0.7m2PNGVGoals,Moore,T.CCrolling-resistance0.008,.011OTATransmissionEfficiencies:5spdo(parallel,conventional)/1spd.(series)92%/98%AutomotiveEngineering,1996HeatEngine(HPU)Scaled85kWTDIDieselStock,D.,1990Motor/ControllerScaled75kWACInductionLesster,L.,1993EnergyStorage:BatteriesHorizon12N85Electrosource0-60mphtime12.0secondsPNGVGoalsGradeabilityat55mph6.5%indefinitelyMorestringentthanPNGVgoal,whichis6.5%for20MinutesFuelEconomyCalculationToaccountforchangesinthebatterypack'sSOCduringatestcycle,asimplifiedversionoftheproposedSAEHybridVehicleTestProcedureisbeingused.Tocomeupwiththecityfueleconomy,twoFUDSarerunback-to-backfromahighSOCandthenfromalowSOC,causingadecreaseandanincreaseinbatterySOC,respectively.AsimplelinearinterpolationisthenusedtopredictthefueleconomyestimateforthevehicleifthebatterieshadnonetchangeinSOC.Thisensuresafaircomparisonbetweenconventionalvehiclesandhybridvehiclesbyaccountingforanyelectricalenergysurplusordeficitinthehybridvehicle'sbatterypack.WithoutsuchaccountingforthechangeinSOCofthebatterypack,thehybridmightappeartohaveanextremelyhighfueleconomyduetoelectricenergybeingusedinplaceoffuelenergy.SensitivityofFuelEconomytoKe^VehicleParametersAsensitivityanalysisofthekeyparametersforasimulatedvehicleillustrateshowsensitivetheoutput(fueleconomyinthiscase)istochangesintheinputparameters.Thisallowsaside-by-sidecomparisonoftheinputparametersinordertofocusontechnologyareasthatareimportanttothefinalfueleconomy.Inadditiontotherelativecomparisonspossible,italsoprovidesnumbersfromwhichfueleconomychangesduetoinputparameterchangescanbeeasilycalculated.Foreachofthefivebasecasevehicleseachofthekeyparameterswasadjustedupby5%anddownby5%,resultingintwopointsfromwhichtheslopewascalculated.Notethatthesecoefficientsareusefulbeyondthe10%spreadoverwhichtheywerecalculated,buttheabsolutevalueoftheresultstheypredictshouldn'tbetrustedbeyondabout+/-10%.Forthefivevehiclesmodeledasensitivityanalysiswasperformed,andtheresultsareshowninthebarchartofFigure2.RefertoTable1forthebaselineparametersforeachofthefivevehicleslistedinthefigure.NoticethatthesensitivitycoefficientfortheHPUforallfivevehiclesis1.0.Thismeansthatfora1%increaseinengineefficiency,therewillbea1%increaseinfueleconomy.Sincetheengineistheprimeenergyconverteronboardahybridorconventionalvehicle,thisisnotsurprising,butisstillimportanttokeepinmind.BecauseofthislargesensitivitytoHPUefficiency,thereissignificantindustryandgovernmenteffortplacedintoresearchongasturbines,advanceddiesels,stirlingengines,andfuelcells.Figure2:SensitivityofFuelEconomytoKeyVehicleParameters
esErq-AesErq-A.=弟-an』.saEME-lo1.2fl9土白財(cái)0,2-6.3心-a.afrt^_HPUC_D"AC__JEA<xe*mric^da^bjtierytta^motorTheresultsinFigure2showthatthesensitivitycoefficientsforthebatteryefficiency(eta_battery)andthemotorefficiency(eta_motor)forthe3Xseriesvehicleareroughly3timesthoseoftheparallelvehicles.Thereasonforthisisthatsinceallofthepowertothewheelsfromaserieshybridcomesfromtheelectricmotor,higherpowerandhencehigherpowerlossesareexperiencedinthemotor.Also,forserieshybridsmoreenergyispassedthroughthebatteriesthaninparallelvehicles,incurringlargerlossesinthebatteries.Intermsoftechnologyrisk,thisindicatesthatseriesHEVsaremoreaffectedbyefficiencyimprovementsinthemotorandbatteriesthanparallelhybrids,andareatagreaterriskofnotmeetingfueleconomygoalsifanticipatedimprovementsdonotcomethrough.Thefourparametersbelowtheaxisareparametersthatdecreasefueleconomywhentheyareincreased.Thegoalistokeeptheseparametersaslowaspossible.Taketheexampleofminimizingaccessoryloadsforaparallel3Xvehicle:forevery1%decreaseinaccessoryload,thereisa0.24%increaseinfueleconomy.Withabaselineaccessoryloadof800W,a10%reduction(80W)resultsina2.4%increaseinfueleconomy.Theseresultsallowafueleconomytradeofftobequantifiedforadditionalfeaturesonacarsuchasdaytime-runninglights.MappingouttheHEVDesignSpaceThroughParametricStudiesFigure3showsfueleconomycontourscomputedwithADVISORasafunctionofaverageHPUefficiencyandvehiclemassforaparallelhybridvehiclewiththeaerodynamicdragandrollingresistanceofthe3XparallevehicleinTable1.Notethatthe80mpgfueleconomycontouristheonethatdefinesthefueleconomygoalforthePNGV.TwovehiclemassesofinterestFigure3areat1000kgandjustabove1600kg,thetwomassesusedintheconstructionofthe5vehicleconfigurations.Itisclearfromthisgraphthatweightsavingscoupledwithdragreductionisstillnotenoughtogetto80mpg(3X)fromtoday'sconventionalsparkignitionenginewhichhasanaverageHPUefficiencyof~25%.Themasswouldhavetobemorethancutinhalf,whichisnotfeasibleinthenearfuture.Likewise,thisgraphshowsitisdifficulttoachieve3XwithonlyHPUefficiencyimprovements,hybridization,andvehicledragreduction.Extrapolatingfromthischart,weinferthata3Xvehicleat1600kgwouldrequireanaverageHPUefficiencyof47%,wellbeyondtheaverageefficiencyrangeofdieselsthissize.Figure3:FuelEconomyasaFunctionofHPUEfficiencyandVehicleMassforaFigure3:FuelEconomyasaFunctionofHPUEfficiencyandVehicleMassforaParallelHybrid8009001000<1001200fSOO140015001600vehiclemass(kg)1Pan#3X;PwaHFEVComMwdFiHlEsnanw.MPGU,|J?|!_,!nToisolatetheeffectsofhybridization,thatis,replacingaconventionalvehicle'spropulsionsystemwithahybridsystem,the3Xhybridswereunhybridizedandthe1.45Xconventionalwashybridizedintheinitialdesignofthefivevehicleconfigurations.ReferringtothecombinedfueleconomyresultsinTable1,thelightweightconventionalgets65.4mpgwhilethe3Xseriesandparallelhybridsget80.5and81.8mpg,respectively.Thus,theeffectofhybridizingalightweightconventionalthatgets65.4mpgisroughlya24%improvement,assumingthatthehybridizationcouldbedoneforthesametotalvehiclemass.Forthe38.7mpgconventionalvehicle,hybridizationaddsa17%boostinfueleconomyinthisparticularcase.Itshouldbenotedthatthesevehicles'hybridsystemsarenotoptimized.Thevaluesofhybridizationestimatedhereshouldnotbetakenasupperlimits,butratherasrepresentativevalues.Anotheraspectofhybridizationthatcanbeexaminedfromtheresultsobtainedonthetwo3Xhybridsisthedifferencebetweenserieshybridsandparallelhybrids.Forthesetwounoptimizedhybrids,thefueleconomycameoutto81.8mpgfortheparalleland80.5mpgfortheseries.Thismeansthatbasedontheassumptionsmadeforthesehybrids,includingtheassumptionthatthemasswouldbethesame,bothhybridconfigurationscomeoutwithalmostexactlythesamefueleconomy.Areasonableargumentcouldbemadethatthebatterypackforaserieshybridwouldhavetobemorepowerfulandheavierthanfortheparallelhybrid.Ifamassof1100kgwereusedfortheserieshybridratherthanthe1000kginitiallyassumed,acombinedfueleconomyofroughly76.5mpgresults.Letusconsidertwoindependenttechnologyimprovementpathstogetbackto80mpg.Figure4isthe2Ddesignspaceoffueleconomyasafunctionofdrivelineefficiency(motor,motorcontroller,andtransmission)andaccessoryloadforthe3Xserieshybridwithamassof1100kg.Figure4:FuelEconomyasaFunctionofDrivelineEfficiencyandAccessoryLoadfor1100kgSeriesHybridAsindicatedbythearrowsgoingfromthedotrepresentingthe1100kgbaselinevehicle,withan800Waccessoryloadandan84.5%efficientelectricdrivetrain,tothe80mpgcontour,therearemanypossiblepathstogetbackto80mpgforthisvehicle:reduceaccessoriesby200W,improvedrivelineefficiencyby4%,orsomecombinationofthetwo.Giventhattheserieshybridconsideredherehasahighlyefficient,developmentalACinductionmotorfeedingintoa98%efficientsingle-geartransmission,theopportunitiesfordrivelineefficiencyimprovementsarelimited.Theprudentdesignermaybemoreinclinedtotrytoreduceauxiliaryloads.ConclusionsAnadvancedvehiclesimulatorcalledADVISORwasdevelopedatNRELfortheDepartmentofEnergytoallowsystem-levelanalysisandtrade-offstudiesofadvancedvehicles.Fivevehicleconfigurationsweremodeledandsensitivitycoefficientsforkeyparametersofthesevehicleswerecalculated.Thefueleconomydesignspaceforaparallelandaserieshybridwereexaminedandpossiblescenariostoreach80mpgwerediscussed.Forthevehiclesmodeled,thefueleconomybenefitduetohybridizationwasfoundtobebetween17-24%.The3Xseriesandparallelvehicleswerefoundtogetthesamefueleconomyatthesamemass,butiftheseriesvehiclewere100kgheavier,itwouldbeachallengetomakeitreach80mpg.ReferencesDuleep,K.G.,"FuelEconomyPotentialofLightDutyVehiclesin2015+,"DraftFinalReport,EnergyandEnvironmentalAnalysis,Inc.,Arlington,Virginia,April1995."EfficiencyGuidelinesforFutureManualTransmissions,"AutomotiveEngineering,Jan.1996.Lesster,L.W.,Lindberg,F.A.,Young,R.M.,andHall,W.B.,"AnInductionMotorPowerTrainforEVs--TheRightPowerattheRightPrice,"AdvancedComponentsforElectricandHybridElectricVehicles:WorkshopProceedings,NationalTechnicalInformationService.October27-28,1993.Moore,T.,Lovins,A.,"VehicleDesignStrategiestoMeetandExceedPNGVGoals,"SAEPaper951906,1995.OfficeofTechnologyAssessment(OTA),"AutomotiveTechnologiestoImproveFuelEconomyto2015,"Washington,DC,December1994.PartnershipforaNewGenerationofVehicles,ProgramPlan,July,1994.SAE,DraftSAEJ1711,MeasuringtheElectricEnergyConsumption,AllElectricRange,FuelEconomy,andExhaustEmissionsofHybridElectricVehicles,1995.Stock,D.,Bauder,R.,"TheNewAudi5-CylinderTurboDieselEngine:TheFirstPassengerCarDieselEnginewithSecondGenerationDirectInjection,"SAESpecialPublication823,SAEPaper#900648,1990.中文譯文:基于advisor的混合動(dòng)力車輛動(dòng)力系統(tǒng)的開發(fā)基思B.Wipke,馬修R.Cuddy.美國(guó)國(guó)家再生能源實(shí)驗(yàn)室,科羅拉多州戈?duì)柕?摘要:全國(guó)可再造能源實(shí)驗(yàn)室開發(fā)了一種名為ADVISOR的先進(jìn)的汽車模型仿真軟件,用來對(duì)汽車進(jìn)行系統(tǒng)分析和交易研究。由于ADVISOR的快速的執(zhí)行速度和MATLAB/Simulink的開放程序環(huán)境,這個(gè)仿真系統(tǒng)非常地適用于合乎新一代汽車合作伙伴計(jì)劃PNGV要求的,高燃油經(jīng)濟(jì)性車輛的參數(shù)設(shè)計(jì)和研究。配置五種不同汽車模型,包括3種輕量級(jí)車(并聯(lián)型、串聯(lián)型和傳統(tǒng)型)與1996年車重量的2輛車一起(平行和常規(guī)傳動(dòng))。還有在1996年加入的2種重型車(并聯(lián)型和傳統(tǒng)型)。對(duì)每類車的重要燃料經(jīng)濟(jì)敏感性參數(shù)進(jìn)行分析,并且車的行駛工況參數(shù)進(jìn)行設(shè)置。通過分析這些車的仿真結(jié)果,來獨(dú)立的分析串聯(lián)和并聯(lián)兩種混合動(dòng)力方式對(duì)汽車的影響。先進(jìn)的汽車仿真模型:ADVISOR1994年11月,國(guó)家可再生能源實(shí)驗(yàn)室的交通技術(shù)中心在Mathworks公司的面向?qū)ο蟮木幊陶Z言的MATLAB/Simulink環(huán)境下創(chuàng)造了進(jìn)的車輛模型仿真系統(tǒng)。這個(gè)模型是在汽車工業(yè)的能源部的支持下建立的。ADVISOR可以將汽車各個(gè)部件那些不連續(xù)的動(dòng)作近似地看作為連續(xù)動(dòng)作狀態(tài)下的穩(wěn)定狀態(tài)。那樣,在每個(gè)時(shí)刻都將忽略掉電流、電壓、轉(zhuǎn)矩、轉(zhuǎn)速的改變對(duì)系統(tǒng)的影響。這樣通過測(cè)試動(dòng)力傳動(dòng)系統(tǒng)在一個(gè)固定的轉(zhuǎn)矩和轉(zhuǎn)速下,在每單位時(shí)間步長(zhǎng)下對(duì)電力的需求,允許有效率或功率的損耗。在Simulink/Matlab的環(huán)境下利用這個(gè)模型有一個(gè)非常顯著的優(yōu)勢(shì),那就是靈活容易地來改變模型,例如可以更換一種控制策略或是更換一種再生制動(dòng)算法°MATLAB也可以容易的分析仿真結(jié)果,盡可能詳細(xì)地分析車輛的配置。ADVISOR是由輸入一些車輛行駛的參數(shù)來去驅(qū)動(dòng)的,包含一些經(jīng)典的特性曲線,如美國(guó)的城市循環(huán)工況,或者是速度與爬坡能力的特性曲線。在給定驅(qū)動(dòng)的目標(biāo)配置文件后,ADVISOR將采取向后的方式從輪轂和各動(dòng)力源間各部分所需車輪速度要求的扭矩和速度來控制,這取決于混合動(dòng)力單元或由電池供電。圖1顯示了一系列高級(jí)的混合模型的數(shù)值仿真。圖1高級(jí)的混合模型的數(shù)值仿真。仿真和交互作用的檢驗(yàn)是重要的重要之處是建立模型的可信度。通過與那些成功制造和測(cè)試混合動(dòng)力汽車大學(xué)的合作,國(guó)家再生能源實(shí)驗(yàn)室獲得了一些驗(yàn)證組件模型,包含了量化的不確定性,并增加了可信的數(shù)據(jù)。最后車輛幾倍的驗(yàn)證,包含詳細(xì)的不確定性分析在1996年的九月完成。同時(shí),與公共汽車模型相關(guān)的部分已完成,才外還加入了一些汽車行業(yè)中的專用模型。在此基礎(chǔ)上比較,ADVISOR看來是在根據(jù)多數(shù)模型之內(nèi)相同輸入的2%以內(nèi)。因此,在ADVISOR的結(jié)果是通過它的算法來反映最小的不確定性;輸入數(shù)據(jù)的不確定性是分析不確定性的要原因。所以,所有輸入數(shù)據(jù)的來源模仿的在分析下面指定。車輛模型和假設(shè):五種不同的車輛配置建模。串、并聯(lián)混合動(dòng)力車以小的質(zhì)量和高效的傳動(dòng)系統(tǒng)建模是為了得到像PNGV一樣的混合動(dòng)力車,獲得城市/高速路的燃油經(jīng)濟(jì)性在80英里/加侖。這些被稱為“3倍”的車,是因?yàn)樗麄兊玫?倍于傳統(tǒng)車輛的燃油經(jīng)濟(jì)性城市/高速路26.6英里/加侖。第三個(gè)配置是創(chuàng)建一個(gè)沒有混合動(dòng)力的常規(guī)的車輛。第四和第五車輛配置是由以傳統(tǒng)的車輛(大概在1.45倍由于柴油機(jī)和手操作的傳動(dòng)系統(tǒng)),并將它變成并聯(lián)混合動(dòng)力。表1提供五種車輛仿真配置的燃油經(jīng)濟(jì)性的差異,而表2給出了數(shù)據(jù)來源的輸入。
表1:車輛配置模型的主要參數(shù)值:VehicleConfig3XParallelHybrid3XSeriesHybrid2.46XLightWt(nonhybrid)1.45XConv.(diesel)1.70XParallelHybridMass(kg)1000.0001000.0001000.0001611.0001611.000BatteryCap.(kWh)1.1003.700n/an/a1.800PeakHPUPower(kW)31.00030.00047.00077.00052.000PeakMotorPower(kW)12.00041.000n/an/a20.000CdA0.4000.4000.4000.7000.700Crollingresistance0.0080.0080.0080.0110.011City(mpg)73.80072.30056.10033.80040.700Highway(mpg)94.30093.60082.10047.00052.800Combined(mpg)81.80080.50065.40038.70045.300縮放比例:因?yàn)閺?-60英里/小時(shí)的加速時(shí)間和在55英里/小時(shí)和爬坡能力是所有車的性能要求,液壓動(dòng)力系統(tǒng),在這種情況下類似奧迪五缸的渦輪柴油引擎和電動(dòng)機(jī)可以滿足這兩個(gè)參數(shù)目標(biāo)。一個(gè)主要的假設(shè)下,這兩種結(jié)構(gòu)的轉(zhuǎn)矩/速度(相當(dāng)于功率損耗效率圖)可以在坐標(biāo)圖上簡(jiǎn)單的標(biāo)出扭矩比例。眾所周知,這不是最精確的方法,但被用于缺乏一個(gè)可合理尺度算法的情況下。質(zhì)量:這些傳統(tǒng)的1.45倍的和混合動(dòng)力的車輛的質(zhì)量數(shù)據(jù)來源于美國(guó)技術(shù)評(píng)估局對(duì)于當(dāng)時(shí)流行的福特品牌的金牛座車的評(píng)估報(bào)告。在報(bào)告中對(duì)于那些質(zhì)量大概在一噸左右的3X型的車輛會(huì)在2015年以后用鋁來代替其他的金屬作為制造的主要材料。這與今天的車輛在質(zhì)量比較上是巨幅的減少;并且這些數(shù)據(jù)還可以用在其它的高效率的總成以及作為滿足PNGV計(jì)劃中所要求的技術(shù)參數(shù)?;旌蟿?dòng)力控制策略:串聯(lián)的混合控制是用一個(gè)類似于“恒溫器”的東西來操縱液壓動(dòng)力裝置,當(dāng)在開啟狀態(tài)時(shí)HPU是在一個(gè)固定的扭矩和轉(zhuǎn)速下運(yùn)行。在這項(xiàng)研究中,當(dāng)電池的充電量低于40%時(shí)HPU將打開,而電池的充電電量達(dá)到80%以上時(shí)將關(guān)閉。并立案的混合控制策略對(duì)于那些電池使用時(shí)間短的車有影響,除非在電池電量低的時(shí)候保持電池充電。它是樣定義的,將60%的SOC狀態(tài)定位高,將50%的SOC狀態(tài)定為低:*HPU不會(huì)停機(jī)(除非實(shí)在不需要時(shí))*不論是否達(dá)在電池的充電狀態(tài)發(fā)動(dòng)機(jī)都可以產(chǎn)生在成制動(dòng)力。*HPU一般會(huì)在遇到指令或是在發(fā)動(dòng)機(jī)需要必要的動(dòng)力時(shí)會(huì)提供動(dòng)力,也有一些特殊情況:1、當(dāng)電量過低時(shí)會(huì)提高扭矩來重新充電。2、當(dāng)點(diǎn)亮過高時(shí)將不會(huì)充電。燃油經(jīng)濟(jì)性的計(jì)算:為了證明在一個(gè)測(cè)試循環(huán)中電池組充電狀態(tài)的變化,推薦用一個(gè)簡(jiǎn)單版本的美國(guó)汽車工程是學(xué)會(huì)的混合動(dòng)力汽車測(cè)試程序。為了提高城市燃油的經(jīng)濟(jì)性,兩個(gè)緊接的從高電量狀態(tài)到低電量狀態(tài)的城市循環(huán)工況各自反映了電池電量的減少和增加。在電池充電狀態(tài)變化不大的情況下,可以用一種簡(jiǎn)單的線性插值的方法來預(yù)測(cè)汽車燃油經(jīng)濟(jì)性的評(píng)估值。這將確保一個(gè)公平的比較常規(guī)的車輛和混合動(dòng)力汽車對(duì)電池組的任何電能盈余或赤字。如果沒有這樣計(jì)算電池組的充電狀態(tài),由于電能被用來代替燃料能源,混合動(dòng)了可能似乎已經(jīng)具有極高的燃油經(jīng)濟(jì)性。表2:數(shù)據(jù)的來源為模仿輸入和性能要求VehicleParameterValuesUsedSourceofInputDataCDA0.4,0.7m2PNGVGoals,Moore,T.CCrolling-resistance0.008,.011OTATransmissionEfficiencies:5spdo(parallel,92%/98%AutomotiveEngineering,1996
車輛的燃油鍵參數(shù):conventional)車輛的燃油鍵參數(shù):conventional)/1spd.(series)HeatEngine(HPU)Scaled85kWTDIDieselStock,D.,1990Motor/ControllerScaled75kWACInductionLesster,L.,1993EnergyStorage:BatteriesHorizon12N85Electrosource0-60mphtime12.0secondsPNGVGoalsGradeabilityat55mph6.5%indefinitelyMorestringentthanPNGVgoal,whichis6.5%for20minutes經(jīng)濟(jì)性的關(guān)靈敏度分析的關(guān)鍵參數(shù)的模擬車輛說明如何敏感輸出(燃油經(jīng)濟(jì)性在這種情況下)是變化的輸入?yún)?shù)。這允許并排比較輸入?yún)?shù),以便把重點(diǎn)放在提高燃油經(jīng)濟(jì)性的重要技術(shù)領(lǐng)域。此外,相對(duì)比較有可能的是,由于輸入?yún)?shù)的變化可以很容易地計(jì)算出燃油經(jīng)濟(jì)性的數(shù)量變化。對(duì)于五種基本模型中的每一種都可以對(duì)關(guān)鍵參數(shù)進(jìn)行上下5%的調(diào)整。這表明這些系數(shù)可以在超出10%的情況下計(jì)算,但是信任值不能超出正負(fù)10%。對(duì)于這五種汽車模型的參數(shù)分析的結(jié)果顯示在圖2的條形圖中。參照表1中的五種車的基本參數(shù)。請(qǐng)注意,所有五種車的靈敏度系數(shù)是1.0。這也就是說,增加1%的引擎效率,將增加1%的燃油經(jīng)濟(jì)性。由于發(fā)動(dòng)機(jī)是混合動(dòng)力或常規(guī)車輛的能量轉(zhuǎn)換器,這并不奇怪,但仍然必須牢記。由于這種大型HPU的效率敏感性很強(qiáng),工業(yè)部和政府正將極大的努力放在研究燃?xì)廨啓C(jī),先進(jìn)的柴油機(jī),斯特林發(fā)動(dòng)機(jī)和燃料電池上。圖2:燃油經(jīng)濟(jì)性的主要參數(shù)esesErq-A.=弟-an』.saEME-lo圖2的結(jié)果表明,電池效率和電機(jī)效率的敏感性系數(shù)為3倍串聯(lián)式車輛大致是并聯(lián)式車輛的三倍。這樣的理由是,因?yàn)樗械牡杰囕喌尿?qū)動(dòng)力,來自于串聯(lián)式電動(dòng)機(jī),高功率和高功率損耗發(fā)動(dòng)機(jī)的串聯(lián)。這樣串聯(lián)式的比并聯(lián)式可以通過電池提供更多的動(dòng)力,也會(huì)引起電池更多的消耗。在技術(shù)層面有一定的風(fēng)險(xiǎn),這就是說串聯(lián)式混合動(dòng)力汽車在提高發(fā)動(dòng)機(jī)效率和電池方面受到的影響比并聯(lián)式的要多,如果不能通過改進(jìn)來解決將遇到更大的困難。坐標(biāo)軸下的四個(gè)參數(shù)量會(huì)在燃油經(jīng)濟(jì)性提高的時(shí)候減小。我們的目標(biāo)是讓這些參數(shù)盡可能的維持在低水平。舉例說明盡可能減少負(fù)荷對(duì)3倍車的影響:每減少1%配件負(fù)荷,燃油經(jīng)濟(jì)性有0.24%的升幅。觀察負(fù)荷為800w的曲線,每降低10%將提高2.4%的燃油經(jīng)濟(jì)性。這些結(jié)果使燃油經(jīng)濟(jì)性的權(quán)衡是可以量化的附加功能的汽車,如白天行駛的時(shí)候開燈?;旌蟿?dòng)力汽車的設(shè)計(jì)空間映射參數(shù)的研究:圖3顯示了在advisor的計(jì)算了考慮表1中的3倍的并聯(lián)式混合動(dòng)力車在有空氣阻力和滾動(dòng)阻力情況下,HPU的平均效率和質(zhì)量的燃油經(jīng)濟(jì)性曲線??梢缘贸?0英里每加侖的曲線是PNGV計(jì)劃中所要求的。圖3:HPU效率和裝備質(zhì)量對(duì)并聯(lián)式混合動(dòng)力車燃油經(jīng)濟(jì)性的影響
8009001000iloo12008009001000iloo1200f300140015001600vehiclemass(kg)FwvHl-EVConttHdFuHEcononv,MPGfPan4al3X!兩種大眾的質(zhì)量在圖3中顯示的為1000公斤和1600多公斤并且在五種車輛模型中被定義。從這個(gè)圖中可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)日出作文600字7篇
- 護(hù)理工作總結(jié)15篇
- 《寒冷的冬天》教案
- 工傷簡(jiǎn)單辭職報(bào)告(集錦7篇)
- 網(wǎng)絡(luò)編程協(xié)議課程設(shè)計(jì)
- 2018年全國(guó)兩會(huì)學(xué)習(xí)解讀
- 消費(fèi)電子行業(yè)專題報(bào)告:創(chuàng)新驅(qū)動(dòng)需求復(fù)蘇 業(yè)績(jī)與估值有望修復(fù)
- 兒童看護(hù)服務(wù)合同(2篇)
- 河南省安陽市林州城郊鄉(xiāng)第六職業(yè)中學(xué)高二地理聯(lián)考試題含解析
- 煤炭經(jīng)營(yíng)場(chǎng)地出租合同范本
- 垂直管理體系下績(jī)效分配模式推進(jìn)護(hù)理服務(wù)課件
- 二年級(jí)上冊(cè)英語說課稿-Module 4 Unit 2 He doesn't like these trousers|外研社(一起)
- 2023-2024人教版小學(xué)2二年級(jí)數(shù)學(xué)下冊(cè)(全冊(cè))教案設(shè)計(jì)
- 少數(shù)民族普通話培訓(xùn)
- 詩朗誦搞笑版臺(tái)詞
- 養(yǎng)老服務(wù)中心裝飾裝修工程施工方案
- 落地式腳手架監(jiān)理實(shí)施細(xì)則
- 上海市金山區(qū)2022-2023學(xué)年中考一模英語試題含答案
- 節(jié)水灌溉供水工程初步設(shè)計(jì)報(bào)告
- 【期末試題】河西區(qū)2018-2019學(xué)年度第一學(xué)期六年級(jí)數(shù)學(xué)期末試題
- 2022年總經(jīng)理年會(huì)發(fā)言稿致辭二
評(píng)論
0/150
提交評(píng)論