高一必修二數學知識點_第1頁
高一必修二數學知識點_第2頁
高一必修二數學知識點_第3頁
高一必修二數學知識點_第4頁
高一必修二數學知識點_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

本文格式為Word版,下載可任意編輯——高一必修二數學知識點高一必修二數學學識點最新有哪些你知道嗎?養(yǎng)成良好的學習數學習慣。建立良好的學習數學習慣,會使自己學習感到有序而輕松。一起來看看高一必修二數學學識點最新,接待查閱!

高一必修二數學學識點

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.更加地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.

當時,;當時,;當時,不存在.

②過兩點的直線的斜率公式:

留神下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的依次無關;(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到.

(3)直線方程

①點斜式:直線斜率k,且過點

留神:當直線的斜率為0°時,k=0,直線的方程是y=y1.

當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1.

②斜截式:,直線斜率為k,直線在y軸上的截距為b

③兩點式:()直線兩點,

④截矩式:

其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為.

⑤一般式:(A,B不全為0)

留神:各式的適用范圍特殊的方程如:

(4)平行于x軸的直線:(b為常數);平行于y軸的直線:(a為常數);

(5)直線系方程:即具有某一共同性質的直線

(一)平行直線系

平行于已知直線(是不全為0的常數)的直線系:(C為常數)

(二)垂直直線系

垂直于已知直線(是不全為0的常數)的直線系:(C為常數)

(三)過定點的直線系

(ⅰ)斜率為k的直線系:,直線過定點;

(ⅱ)過兩條直線,的交點的直線系方程為

(為參數),其中直線不在直線系中.

(6)兩直線平行與垂直

留神:利用斜率判斷直線的平行與垂直時,要留神斜率的存在與否.

(7)兩條直線的交點

相交

交點坐標即方程組的一組解.

方程組無解;方程組有多數解與重合

(8)兩點間距離公式:設是平面直角坐標系中的兩個點

(9)點到直線距離公式:一點到直線的距離

(10)兩平行直線距離公式

在任一向線上任取一點,再轉化為點到直線的距離舉行求解.

高一上冊數學學識點歸納(總結)

一、集合

1.集合的含義

2.集合的中元素的三個特性:

(1)元素確實定性如:世界上最高的山

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

3.集合的表示:{…}如:{我校的(籃球)隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示(方法):列舉法與描述法。

u留神:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N_或N+整數集Z有理數集Q實數集R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。{x?R|x-32},{x|x-32}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合

(2)無限集含有無限個元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

二、集合間的根本關系

1.“包含”關系—子集

留神:

有兩種可能(1)A是B的一片面,;(2)A與B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,記作A

2.“相等”關系:A=B(5≥5,且5≤5,那么5=5)

實例:設A={x|x2-1=0}B={-1,1}“元素一致那么兩集合相等”

即:①任何一個集合是它本身的子集。A?A

②真子集:假設A?B,且A?B那就說集合A是集合B的真子集,記作A

③假設A?B,B?C,那么A?C

④假設A?B同時B?A那么A=B

3.不含任何元素的集合叫做空集,記為Φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

u有n個元素的集合,含有2n個子集,2n-1個真子集

二、函數

1、函數定義域、值域求法綜合

2.、函數奇偶性與單調性問題的解題策略

3、恒成立問題的求解策略

4、反函數的幾種題型及方法

5、二次函數根的問題——一題多解

指數函數y=a^x

a^a_a^b=a^a+b(a0,a、b屬于Q)

(a^a)^b=a^ab(a0,a、b屬于Q)

(ab)^a=a^a_b^a(a0,a、b屬于Q)

指數函數對稱規(guī)律:

1、函數y=a^x與y=a^-x關于y軸對稱

2、函數y=a^x與y=-a^x關于x軸對稱

3、函數y=a^x與y=-a^-x關于坐標原點對稱為常數.

2、冪函數性質歸納.

(1)全體的冪函數在(0,+∞)都有定義并且圖象都過點(1,1);

三、平面向量

已知兩個從同一點O啟程的兩個向量OA、OB,以OA、OB為鄰邊作平行四邊形OACB,那么以O為起點的對角線OC就是向量OA、OB的和,這種計算法那么叫做向量加法的平行四邊形法那么。對于零向量和任意向量a,有:0+a=a+0=a。|a+b|≤|a|+|b|。向量的加法得志全體的加法運算定律。數乘運算實數λ與向量a的積是一個向量,這種運算叫做向量的數乘,記作λa,|λa|=|λ||a|,當λ0時,λa的方向和a的方向一致,當λ0時,λa的方向和a的方向相反,當λ=0時,λa=0。設λ、μ是實數,那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。向量的加法運算、減法運算、數乘運算統稱線性運算。向量的數量積已知兩個非零向量a、b,那么|a||b|cosθ叫做a與b的數量積或內積,記作a?b,θ是a與b的夾角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數量積為0。a?b的幾何意義:數量積a?b等于a的長度|a|與b在a的方向上的投影|b|cosθ的乘積。兩個向量的數量積等于它們對應坐標的乘積的和。

高一必修二數學學識

1、柱、錐、臺、球的布局特征

(1)棱柱:

幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形.

(2)棱錐

幾何特征:側面、對角面都是三角形;平行于底面的截面與底(面相)似,其好像比等于頂點到截面距離與高的比的平方.

(3)棱臺:

幾何特征:①上下底面是好像的平行多邊形②側面是梯形③側棱交于原棱錐的頂點

(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面開展圖是一個矩形.

(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成

幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面開展圖是一個扇形.

(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成

幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面開展圖是一個弓形.

(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑.

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、

俯視圖(從上向下)

注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度.

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:①原來與x軸平行的線段依舊與x平行且長度不變;

②原來與y軸平行的線段依舊與y平行,長度為原來的一半.

4、柱體、錐體、臺體的外觀積與體積

(1)幾何體的外觀積為幾何體各個面的面積的和.

(2)特殊幾何體外觀積公式(c為底面周長,h為高,為斜高,l為母線)

(3)柱體、錐體、臺體的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論