




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
憶一憶1、全等三角形的對(duì)應(yīng)邊
---------,,對(duì)應(yīng)角-----------相等相等2、判定三角形全等的方法有:SAS、ASA、AAS、SSS直角邊直角邊斜邊認(rèn)識(shí)直角三角形Rt△ABC憶一憶相等相等2、判定三角形全等的方法有:SAS、ASA、A直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定
舞臺(tái)背景的形狀是兩個(gè)直角三角形,工作人員想知道兩個(gè)直角三角形是否全等,但每個(gè)三角形都有一條直角邊被花盆遮住,無法測(cè)量。(1)你能幫他想個(gè)辦法嗎?根據(jù)SAS可測(cè)量其余兩邊與這兩邊的夾角。根據(jù)ASA,AAS可測(cè)量對(duì)應(yīng)一邊和一銳角舞臺(tái)背景的形狀是兩個(gè)直角三角形,工作人員想知道兩個(gè)直角三角
工作人員測(cè)量了每個(gè)三角形沒有被遮住的直角邊和斜邊,發(fā)現(xiàn)它們分別對(duì)應(yīng)相等。于是,他就肯定“兩個(gè)直角三角形是全等的”。你相信這個(gè)結(jié)論嗎?(2)如果他只帶一個(gè)卷尺,能完成這個(gè)任務(wù)嗎?
讓我們來驗(yàn)證這個(gè)結(jié)論。斜邊和一條直角邊對(duì)應(yīng)相等→兩個(gè)直角三角形全等工作人員測(cè)量了每個(gè)三角形沒有被遮住的直角邊和斜邊動(dòng)動(dòng)手做一做用三角板和圓規(guī),畫一個(gè)Rt△ABC,使得∠C=90°,一直角邊CA=4cm,斜邊AB=5cm.ABC5cm4cm動(dòng)動(dòng)手做一做用三角板和圓規(guī),畫一個(gè)Rt△ABC,使得∠C=動(dòng)動(dòng)手做一做Step1:畫∠MCN=90°;CNM動(dòng)動(dòng)手做一做Step1:畫∠MCN=90°;CNM動(dòng)動(dòng)手做一做Step1:畫∠MCN=90°;CNMStep2:在射線CM上截取CA=4cm;A動(dòng)動(dòng)手做一做Step1:畫∠MCN=90°;CNMStepStep1:畫∠MCN=90°;Step2:在射線CM上截取CA=4cm;動(dòng)動(dòng)手做一做Step3:以A為圓心,5cm為半徑畫弧,交射線CN于B;CNMABStep1:畫∠MCN=90°;Step2:在射線CM上截取Step1:畫∠MCN=90°;CNMStep2:在射線CM上截取CA=4cm;B動(dòng)動(dòng)手做一做Step3:以A為圓心,5cm為半徑畫弧,交射線CN于B;AStep4:連結(jié)AB;△ABC即為所要畫的三角形Step1:畫∠MCN=90°;CNMStep2:在射線CM動(dòng)動(dòng)手做一做比比看把我們剛畫好的直角三角形剪下來,和同桌的比比看,這些直角三角形有怎樣的關(guān)系呢?動(dòng)動(dòng)手做一做比比看把我們剛畫好的直角三角形剪下來,和同桌你發(fā)現(xiàn)了什么?Rt△ABC≌ABC5cm4cmA′B′C′5cm4cm你發(fā)現(xiàn)了什么?Rt△ABC≌ABC5cm4cmA′B′C斜邊、直角邊公理有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等.簡(jiǎn)寫成“斜邊、直角邊”或“HL”前提條件1條件2斜邊、直角邊公理有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全斜邊、直角邊公理(HL)ABCA′B′C′∴在Rt△ABC和Rt△中AB=BC=∴Rt△ABC≌∵∠C=∠C′=90°有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等.前提條件1條件2斜邊、直角邊公理(HL)ABCA′B′C′∴在Rt△A判斷:滿足下列條件的兩個(gè)三角形是否全等?為什么?1.一個(gè)銳角及這個(gè)銳角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)直角三角形.全等(AAS)判斷:1.一個(gè)銳角及這個(gè)銳角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)直角三角形.2.一個(gè)銳角及這個(gè)銳角相鄰的直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形.全等判斷:滿足下列條件的兩個(gè)三角形是否全等?為什么?(
ASA)2.一個(gè)銳角及這個(gè)銳角相鄰的直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形.3.兩直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形.全等判斷:滿足下列條件的兩個(gè)三角形是否全等?為什么?(
SAS)3.兩直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形.全等判斷:(SAS)4.有兩邊對(duì)應(yīng)相等的兩個(gè)直角三角形.全等判斷:滿足下列條件的兩個(gè)三角形是否全等?為什么?情況1:全等情況2:全等(SAS)(
HL)4.有兩邊對(duì)應(yīng)相等的兩個(gè)直角三角形.全等判斷:情況1:全等情例1已知:如圖,△ABC中,AB=AC,AD是高求證:BD=CD;∠BAD=∠CADABCD證明:∵AD是高∴∠ADB=∠ADC=90°在Rt△ADB和Rt△ADC中AB=ACAD=AD∴Rt△ADB≌Rt△ADC(HL)∴BD=CD,∠BAD=∠CAD等腰三角形三線合一例1已知:如圖,△ABC中,AB=AC,AD是高ABCD證例2已知:如圖,在△ABC和△ABD中,AC⊥BC,AD⊥BD,垂足分別為C,D,AD=BC,求證:△ABC≌△BAD.ABDC證明:∵AC⊥BC,AD⊥BD∴∠C=∠D=90°在Rt△ABC和Rt△BAD中
∴Rt△ABC≌Rt△BAD(HL)A例2已知:如圖,在△ABC和△ABD中,AC⊥BC,AD⊥例3已知:如圖,在△ABC和△DEF中,AP、DQ分別是高,并且AB=DE,AP=DQ,∠BAC=∠EDF,求證:△ABC≌△DEFABCPDEFQ∠BAC=∠EDF,AB=DE,∠B=∠E分析:△ABC≌△DEFRt△ABP≌Rt△DEQAB=DE,AP=DQ例3已知:如圖,在△ABC和△DEF中,AP、DQ分別是高,ABCPDEFQ證明:∵AP、DQ是△ABC和△DEF的高∴∠APB=∠DQE=90°在Rt△ABP和Rt△DEQ中AB=DEAP=DQ∴Rt△ABP≌Rt△DEQ(HL)∴∠B=∠E在△ABC和△DEF中∠BAC=∠EDFAB=DE∠B=∠E∴△ABC≌△DEF(ASA)ABCPDEFQ證明:∵AP、DQ是△ABC和△DEF的高A思維拓展已知:如圖,在△ABC和△DEF中,AP、DQ分別是高,并且AB=DE,AP=DQ,∠BAC=∠EDF,求證:△ABC≌△DEFABCPDEFQ變式1:若把∠BAC=∠EDF,改為BC=EF
,△ABC與△DEF全等嗎?請(qǐng)說明思路。小結(jié)思維拓展已知:如圖,在△ABC和△DEF中,AP、DQ分別是已知:如圖,在△ABC和△DEF中,AP、DQ分別是高,并且AB=DE,AP=DQ,∠BAC=∠EDF,求證:△ABC≌△DEFABCPDEFQ變式1:若把∠BAC=∠EDF,改為BC=EF
,△ABC與△DEF全等嗎?請(qǐng)說明思路。變式2:若把∠BAC=∠EDF,改為AC=DF,△ABC與△DEF全等嗎?請(qǐng)說明思路。思維拓展小結(jié)已知:如圖,在△ABC和△DEF中,AP、DQ分別是高,AB已知:如圖,在△ABC和△DEF中,AP、DQ分別是高,并且AB=DE,AP=DQ,∠BAC=∠EDF,求證:△ABC≌△DEFABCPDEFQ變式1:若把∠BAC=∠EDF,改為BC=EF
,△ABC與△DEF全等嗎?請(qǐng)說明思路。變式2:若把∠BAC=∠EDF,改為AC=DF,△ABC與△DEF全等嗎?請(qǐng)說明思路。變式3:請(qǐng)你把例題中的∠BAC=∠EDF改為另一個(gè)適當(dāng)條件,使△ABC與△DEF仍能全等。試證明。思維拓展小結(jié)已知:如圖,在△ABC和△DEF中,AP、DQ分別是高,AB直角三角形全等的判定一般三角形全等的判定“SAS”“ASA”“AAS”“SSS”“SAS”“ASA”“AAS”“HL”靈活運(yùn)用各種方法證明直角三角形全等應(yīng)用“SSS”直角三角形全等的判定一般三角形全等的判定“SAS”“ASA已知:如圖,D是△ABC的BC邊上的中點(diǎn),DE⊥AC,DF⊥AB,垂足分別為E,F,且DE=DF.求證:△ABC是等腰三角形.DBCAFE學(xué)以致用已知:如圖,D是△ABC的BC邊上的中點(diǎn),DE⊥AC,DF⊥學(xué)以致用如圖,有兩個(gè)長(zhǎng)度相同的滑梯,左邊滑梯的高度AC與右邊滑梯水平方向的長(zhǎng)度DF相等,兩個(gè)滑梯的傾斜角∠ABC和∠DFE大小有什么關(guān)系?先把它轉(zhuǎn)化為一個(gè)純數(shù)學(xué)問題:已知:如圖,AC=DF,AC⊥AB,DE⊥DF.求證:∠ABC=∠DFE.學(xué)以致用如圖,有兩個(gè)長(zhǎng)度相同的滑梯,左邊滑梯的高度AC與右邊憶一憶1、全等三角形的對(duì)應(yīng)邊
---------,,對(duì)應(yīng)角-----------相等相等2、判定三角形全等的方法有:SAS、ASA、AAS、SSS直角邊直角邊斜邊認(rèn)識(shí)直角三角形Rt△ABC憶一憶相等相等2、判定三角形全等的方法有:SAS、ASA、A直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定
舞臺(tái)背景的形狀是兩個(gè)直角三角形,工作人員想知道兩個(gè)直角三角形是否全等,但每個(gè)三角形都有一條直角邊被花盆遮住,無法測(cè)量。(1)你能幫他想個(gè)辦法嗎?根據(jù)SAS可測(cè)量其余兩邊與這兩邊的夾角。根據(jù)ASA,AAS可測(cè)量對(duì)應(yīng)一邊和一銳角舞臺(tái)背景的形狀是兩個(gè)直角三角形,工作人員想知道兩個(gè)直角三角
工作人員測(cè)量了每個(gè)三角形沒有被遮住的直角邊和斜邊,發(fā)現(xiàn)它們分別對(duì)應(yīng)相等。于是,他就肯定“兩個(gè)直角三角形是全等的”。你相信這個(gè)結(jié)論嗎?(2)如果他只帶一個(gè)卷尺,能完成這個(gè)任務(wù)嗎?
讓我們來驗(yàn)證這個(gè)結(jié)論。斜邊和一條直角邊對(duì)應(yīng)相等→兩個(gè)直角三角形全等工作人員測(cè)量了每個(gè)三角形沒有被遮住的直角邊和斜邊動(dòng)動(dòng)手做一做用三角板和圓規(guī),畫一個(gè)Rt△ABC,使得∠C=90°,一直角邊CA=4cm,斜邊AB=5cm.ABC5cm4cm動(dòng)動(dòng)手做一做用三角板和圓規(guī),畫一個(gè)Rt△ABC,使得∠C=動(dòng)動(dòng)手做一做Step1:畫∠MCN=90°;CNM動(dòng)動(dòng)手做一做Step1:畫∠MCN=90°;CNM動(dòng)動(dòng)手做一做Step1:畫∠MCN=90°;CNMStep2:在射線CM上截取CA=4cm;A動(dòng)動(dòng)手做一做Step1:畫∠MCN=90°;CNMStepStep1:畫∠MCN=90°;Step2:在射線CM上截取CA=4cm;動(dòng)動(dòng)手做一做Step3:以A為圓心,5cm為半徑畫弧,交射線CN于B;CNMABStep1:畫∠MCN=90°;Step2:在射線CM上截取Step1:畫∠MCN=90°;CNMStep2:在射線CM上截取CA=4cm;B動(dòng)動(dòng)手做一做Step3:以A為圓心,5cm為半徑畫弧,交射線CN于B;AStep4:連結(jié)AB;△ABC即為所要畫的三角形Step1:畫∠MCN=90°;CNMStep2:在射線CM動(dòng)動(dòng)手做一做比比看把我們剛畫好的直角三角形剪下來,和同桌的比比看,這些直角三角形有怎樣的關(guān)系呢?動(dòng)動(dòng)手做一做比比看把我們剛畫好的直角三角形剪下來,和同桌你發(fā)現(xiàn)了什么?Rt△ABC≌ABC5cm4cmA′B′C′5cm4cm你發(fā)現(xiàn)了什么?Rt△ABC≌ABC5cm4cmA′B′C斜邊、直角邊公理有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等.簡(jiǎn)寫成“斜邊、直角邊”或“HL”前提條件1條件2斜邊、直角邊公理有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全斜邊、直角邊公理(HL)ABCA′B′C′∴在Rt△ABC和Rt△中AB=BC=∴Rt△ABC≌∵∠C=∠C′=90°有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等.前提條件1條件2斜邊、直角邊公理(HL)ABCA′B′C′∴在Rt△A判斷:滿足下列條件的兩個(gè)三角形是否全等?為什么?1.一個(gè)銳角及這個(gè)銳角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)直角三角形.全等(AAS)判斷:1.一個(gè)銳角及這個(gè)銳角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)直角三角形.2.一個(gè)銳角及這個(gè)銳角相鄰的直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形.全等判斷:滿足下列條件的兩個(gè)三角形是否全等?為什么?(
ASA)2.一個(gè)銳角及這個(gè)銳角相鄰的直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形.3.兩直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形.全等判斷:滿足下列條件的兩個(gè)三角形是否全等?為什么?(
SAS)3.兩直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形.全等判斷:(SAS)4.有兩邊對(duì)應(yīng)相等的兩個(gè)直角三角形.全等判斷:滿足下列條件的兩個(gè)三角形是否全等?為什么?情況1:全等情況2:全等(SAS)(
HL)4.有兩邊對(duì)應(yīng)相等的兩個(gè)直角三角形.全等判斷:情況1:全等情例1已知:如圖,△ABC中,AB=AC,AD是高求證:BD=CD;∠BAD=∠CADABCD證明:∵AD是高∴∠ADB=∠ADC=90°在Rt△ADB和Rt△ADC中AB=ACAD=AD∴Rt△ADB≌Rt△ADC(HL)∴BD=CD,∠BAD=∠CAD等腰三角形三線合一例1已知:如圖,△ABC中,AB=AC,AD是高ABCD證例2已知:如圖,在△ABC和△ABD中,AC⊥BC,AD⊥BD,垂足分別為C,D,AD=BC,求證:△ABC≌△BAD.ABDC證明:∵AC⊥BC,AD⊥BD∴∠C=∠D=90°在Rt△ABC和Rt△BAD中
∴Rt△ABC≌Rt△BAD(HL)A例2已知:如圖,在△ABC和△ABD中,AC⊥BC,AD⊥例3已知:如圖,在△ABC和△DEF中,AP、DQ分別是高,并且AB=DE,AP=DQ,∠BAC=∠EDF,求證:△ABC≌△DEFABCPDEFQ∠BAC=∠EDF,AB=DE,∠B=∠E分析:△ABC≌△DEFRt△ABP≌Rt△DEQAB=DE,AP=DQ例3已知:如圖,在△ABC和△DEF中,AP、DQ分別是高,ABCPDEFQ證明:∵AP、DQ是△ABC和△DEF的高∴∠APB=∠DQE=90°在Rt△ABP和Rt△DEQ中AB=DEAP=DQ∴Rt△ABP≌Rt△DEQ(HL)∴∠B=∠E在△ABC和△DEF中∠BAC=∠EDFAB=DE∠B=∠E∴△ABC≌△DEF(ASA)ABCPDEFQ證明:∵AP、DQ是△ABC和△DEF的高A思維拓展已知:如圖,在△ABC和△DEF中,AP、DQ分別是高,并且AB=DE,AP=DQ,∠BAC=∠EDF,求證:△ABC≌△DEFABCPDEFQ變式1:若把∠BAC=∠EDF,改為BC=EF
,△ABC與△DEF全等嗎?請(qǐng)說明思路。小結(jié)思維拓展已知:如圖,在△ABC和△DEF中,AP、DQ分別是已知:如圖,在△ABC和△DEF中,AP、DQ分別是高,并且AB=DE,AP=DQ,∠BAC=∠EDF,求證:△ABC≌△DEFABCPDEFQ變式1:若把∠BAC=∠EDF,改為BC=EF
,△ABC與△DEF全等嗎?請(qǐng)說明思路。變式2:若把∠BAC=∠EDF,改為AC=DF,△ABC與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 高新技術(shù)產(chǎn)業(yè)園區(qū)安全管理合同
- 股權(quán)重組及多人參股的轉(zhuǎn)讓與整合協(xié)議
- 生物醫(yī)藥股權(quán)借款質(zhì)押研發(fā)合同
- 文化產(chǎn)業(yè)股權(quán)轉(zhuǎn)讓與版權(quán)質(zhì)押綜合合作協(xié)議
- 知識(shí)產(chǎn)權(quán)保護(hù)下的股權(quán)融資合同模板
- 2025初三升高一數(shù)學(xué)暑假銜接講義25講含答案(必修一內(nèi)容)5.4 三角函數(shù)的圖像與性質(zhì)
- 2025年中考語文模擬試卷-1
- EDTA標(biāo)準(zhǔn)溶液的配制與標(biāo)定34課件
- 考研復(fù)習(xí)-風(fēng)景園林基礎(chǔ)考研試題【鞏固】附答案詳解
- 《風(fēng)景園林招投標(biāo)與概預(yù)算》試題A附參考答案詳解(模擬題)
- 成本加酬金合同協(xié)議書
- 創(chuàng)新創(chuàng)業(yè)實(shí)戰(zhàn)案例解析智慧樹知到期末考試答案章節(jié)答案2024年東北農(nóng)業(yè)大學(xué)
- 基于stm32四軸飛行器控制系統(tǒng)設(shè)計(jì)
- 2024年安徽省高考化學(xué)試卷(真題+答案)
- 2019-2020學(xué)年河南省濟(jì)源市七年級(jí)下學(xué)期期末數(shù)學(xué)試卷-(解析版)
- 江蘇省蘇州市常熟市2023-2024學(xué)年五年級(jí)下學(xué)期數(shù)學(xué)期末檢測(cè)
- 血液凈化抗凝新進(jìn)展-萘莫司他
- 重慶市大渡口區(qū)2023-2024學(xué)年四年級(jí)下學(xué)期期末測(cè)試數(shù)學(xué)試題
- 顱腦外傷的麻醉管理
- 華夏文化五千年智慧樹知到期末考試答案章節(jié)答案2024年大連工業(yè)大學(xué)
- 廣東省廣州市2022-2023學(xué)年五年級(jí)下學(xué)期語文期末試卷(含答案)4
評(píng)論
0/150
提交評(píng)論