浙江省溫州市瑞安市集云實驗學(xué)校2022年數(shù)學(xué)九年級第一學(xué)期期末聯(lián)考模擬試題含解析_第1頁
浙江省溫州市瑞安市集云實驗學(xué)校2022年數(shù)學(xué)九年級第一學(xué)期期末聯(lián)考模擬試題含解析_第2頁
浙江省溫州市瑞安市集云實驗學(xué)校2022年數(shù)學(xué)九年級第一學(xué)期期末聯(lián)考模擬試題含解析_第3頁
浙江省溫州市瑞安市集云實驗學(xué)校2022年數(shù)學(xué)九年級第一學(xué)期期末聯(lián)考模擬試題含解析_第4頁
浙江省溫州市瑞安市集云實驗學(xué)校2022年數(shù)學(xué)九年級第一學(xué)期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.“射擊運動員射擊一次,命中靶心”這個事件是()A.確定事件B.必然事件C.不可能事件D.不確定事件2.如圖,四邊形ABCD為⊙O的內(nèi)接四邊形,已知∠BCD=130°,則∠BOD=()A.B.C.D.3.半徑為R的圓內(nèi)接正六邊形的面積是()A.R2 B.R2 C.R2 D.R24.拋物線y=x2﹣4x+2不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.在70周年國慶閱兵式上有兩輛閱兵車的車牌號如圖所示(每輛閱兵車的車牌號含7位數(shù)字或字母),則“9”這個數(shù)字在這兩輛車牌號中出現(xiàn)的概率為()A. B. C. D.6.某公司2017年的營業(yè)額是萬元,2019年的營業(yè)額為萬元,設(shè)該公司年營業(yè)額的平均增長率為,根據(jù)題意可列方程為()A. B.C. D.7.下列實數(shù)中,有理數(shù)是()A.﹣2 B. C.﹣1 D.π8.邊長為2的正六邊形的面積為()A.6 B.6 C.6 D.9.小思去延慶世界園藝博覽會游覽,如果從永寧瞻勝、萬芳華臺、絲路花雨、九州花境四個景點中隨機選擇一個進行參觀,那么他選擇的景點恰為絲路花雨的概率為()A. B. C. D.10.如圖,點D是等腰直角三角形ABC內(nèi)一點,AB=AC,若將△ABD繞點A逆時針旋轉(zhuǎn)到△ACE的位置,則∠AED的度數(shù)為()A.25° B.30° C.40° D.45°11.如圖,已知⊙O的直徑為4,∠ACB=45°,則AB的長為()A.4 B.2 C.4 D.212.如圖,在Rt△ABC中,∠ACB=90°,如果AC=3,AB=5,那么sinB等于()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,點A、B、C在半徑為9的⊙O上,的長為,則∠ACB的大小是___.14.如圖在圓心角為的扇形中,半徑,以為直徑作半圓.過點作的平行線交兩弧分別于點,則圖中陰影部分的面積是_______.15.如圖,某小區(qū)規(guī)劃在一個長30m、寬20m的長方形ABCD上修建三條同樣寬的通道,使其中兩條與AB平行,另一條與AD平行,其余部分種花草.要使每一塊花草的面積都為78m2,那么通道的寬應(yīng)設(shè)計成多少m?設(shè)通道的寬為xm,由題意列得方程____________16.若點P的坐標是(﹣4,2),則點P關(guān)于原點的對稱點坐標是_____.17.如圖,這是二次函數(shù)y=x2﹣2x﹣3的圖象,根據(jù)圖象可知,函數(shù)值小于0時x的取值范圍為_____.18.在Rt△ABC中,斜邊AB=4,∠B=60°,將△ABC繞點B旋轉(zhuǎn)60°,頂點C運動的路線長是(結(jié)果保留π).三、解答題(共78分)19.(8分)在平面直角坐標系xOy中,有任意三角形,當(dāng)這個三角形的一條邊上的中線等于這條邊的一半時,稱這個三角形叫“和諧三角形”,這條邊叫“和諧邊”,這條中線的長度叫“和諧距離”.(1)已知A(2,0),B(0,4),C(1,2),D(4,1),這個點中,能與點O組成“和諧三角形”的點是,“和諧距離”是;(2)連接BD,點M,N是BD上任意兩個動點(點M,N不重合),點E是平面內(nèi)任意一點,△EMN是以MN為“和諧邊”的“和諧三角形”,求點E的橫坐標t的取值范圍;(3)已知⊙O的半徑為2,點P是⊙O上的一動點,點Q是平面內(nèi)任意一點,△OPQ是“和諧三角形”,且“和諧距離”是2,請描述出點Q所在位置.20.(8分)如圖,⊙O的直徑AB為10cm,弦BC為6cm,D,E分別是∠ACB的平分線與⊙O,直徑AB的交點,P為AB延長線上一點,且PC=PE.(1)求AC、AD的長;(2)試判斷直線PC與⊙O的位置關(guān)系,并說明理由.21.(8分)已知:點和是一次函數(shù)與反比例函數(shù)圖象的連個不同交點,點關(guān)于軸的對稱點為,直線以及分別與軸交于點和.(1)求反比例函數(shù)的表達式;(2)若,求的取值范圍.22.(10分)組織一次排球邀請賽,參賽的每兩個隊都要比賽一場.根據(jù)場地和時間等條件,賽程計劃安排7天,每天安排4場比賽,則比賽組織者應(yīng)邀請多少個隊參賽?23.(10分)己知拋物線與軸交于兩點,與軸交于點,頂點為.(1)求拋物線的表達式及點D的坐標;(2)判斷的形狀.24.(10分)某市“藝術(shù)節(jié)”期間,小明、小亮都想去觀看茶藝表演,但是只有一張茶藝表演門票,他們決定采用抽卡片的辦法確定誰去.規(guī)則如下:將正面分別標有數(shù)字1、2、3、4的四張卡片(除數(shù)字外其余都相同)洗勻后,背面朝上放置在桌面上,隨機抽出一張記下數(shù)字后放回;重新洗勻后背面朝上放置在桌面上,再隨機抽出一張記下數(shù)字.如果兩個數(shù)字之和為奇數(shù),則小明去;如果兩個數(shù)字之和為偶數(shù),則小亮去.(1)請用列表或畫樹狀圖的方法表示抽出的兩張卡片上的數(shù)字之和的所有可能出現(xiàn)的結(jié)果;(2)你認為這個規(guī)則公平嗎?請說明理由.25.(12分)如圖,在正方形中,是對角線上的一個動點,連接,過點作交于點.(1)如圖①,求證:;(2)如圖②,連接為的中點,的延長線交邊于點,當(dāng)時,求和的長;(3)如圖③,過點作于,當(dāng)時,求的面積.26.某童裝店購進一批20元/件的童裝,由銷售經(jīng)驗知,每天的銷售量y(件)與銷售單價x(元)之間存在如圖的一次函數(shù)關(guān)系.(1)求y與x之間的函數(shù)關(guān)系;(2)當(dāng)銷售單價定為多少時,每天可獲得最大利潤,最大利潤是多少?

參考答案一、選擇題(每題4分,共48分)1、D【解析】試題分析:“射擊運動員射擊一次,命中靶心”這個事件是隨機事件,屬于不確定事件,故選D.考點:隨機事件.2、C【解析】根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠A的度數(shù),再根據(jù)圓周角定理求解即可.【詳解】∵四邊形ABCD為⊙O的內(nèi)接四邊形,∠BCD=130°,∴∠A+∠BCD=180°,∴∠A=50°,由圓周角定理得,2∠A=∠BOD=100°,故選C.【點睛】本題考查了圓內(nèi)接四邊形的性質(zhì),圓周角定理,熟練掌握圓內(nèi)接四邊形的對角互補是解題的關(guān)鍵.3、C【分析】連接OE、OD,由正六邊形的特點求出判斷出△ODE的形狀,作OH⊥ED,由特殊角的三角函數(shù)值求出OH的長,利用三角形的面積公式即可求出△ODE的面積,進而可得出正六邊形ABCDEF的面積.【詳解】解:如圖示,連接OE、OD,

∵六邊形ABCDEF是正六邊形,

∴∠DEF=120°,

∴∠OED=60°,

∵OE=OD=R,

∴△ODE是等邊三角形,

作OH⊥ED,則∴∴故選:C.【點睛】本題考查了正多邊形和圓的知識,理解正六邊形被半徑分成六個全等的等邊三角形是解答此題的關(guān)鍵.4、C【分析】求出拋物線的圖象和x軸、y軸的交點坐標和頂點坐標,再根據(jù)二次函數(shù)的性質(zhì)判斷即可.【詳解】解:y=x2﹣4x+4﹣2=(x﹣2)2﹣2,即拋物線的頂點坐標是(2,﹣2),在第四象限;當(dāng)y=0時,x2﹣4x+2=0,解得:x=2,即與x軸的交點坐標是(2+,0)和(2﹣,0),都在x軸的正半軸上,a=1>0,拋物線的圖象的開口向上,與y軸的交點坐標是(0,2),即拋物線的圖象過第一、二、四象限,不過第三象限,故選:C.【點睛】本題考查了求函數(shù)圖像與坐標軸交點坐標和頂點坐標,即求和x軸交點坐標就要令y=0、求與y軸的交點坐標就要令x=0,求頂點坐標需要配成頂點式再求頂點坐標5、B【分析】兩輛閱兵車的車牌號共含14位數(shù)字或字母,其中數(shù)字9出現(xiàn)了3次,根據(jù)概率公式即可求解.【詳解】解:兩輛閱兵車的車牌號共含14位數(shù)字或字母,其中數(shù)字9出現(xiàn)了3次,所以“9”這個數(shù)字在這兩輛車牌號中出現(xiàn)的概率為.故選:B.【點睛】本題考查了概率的計算,掌握概率計算公式是解題關(guān)鍵.6、A【分析】根據(jù)題意2017年的營業(yè)額是100萬元,設(shè)該公司年營業(yè)額的平均增長率為,則2018年的營業(yè)額是100(1+x)萬元,2019年的營業(yè)額是100(1+x)2萬元,然后根據(jù)2019年的營業(yè)額列方程即可.【詳解】解:設(shè)年平均增長率為,則2018的產(chǎn)值為:,2019的產(chǎn)值為:.那么可得方程:.故選:.【點睛】本題考查的是一元二次方程的增長率問題的應(yīng)用.7、A【分析】根據(jù)有理數(shù)的定義判斷即可.【詳解】A、﹣2是有理數(shù),故本選項正確;B、是無理數(shù),故本選項錯誤;C、﹣1是無理數(shù),故本選項錯誤;D、π是無理數(shù),故本選項錯誤;故選:A.【點睛】本題考查有理數(shù)和無理數(shù)的定義,關(guān)鍵在于牢記定義.8、A【解析】首先根據(jù)題意作出圖形,然后可得△OBC是等邊三角形,然后由三角函數(shù)的性質(zhì),求得OH的長,繼而求得正六邊形的面積.【詳解】解:如圖,連接OB,OC,過點O作OH⊥BC于H,∵六邊形ABCDEF是正六邊形,∴∠BOC=×360°=60°,∵OB=0C,∴△OBC是等邊三角形,∴BC=OB=OC=2,∴它的半徑為2,邊長為2;∵在Rt△OBH中,OH=OB?sin60°=2×,∴邊心距是:;∴S正六邊形ABCDEF=6S△OBC=6××2×=6.故選:A.【點睛】本題考查圓的內(nèi)接正六邊形的性質(zhì)、正多邊形的內(nèi)角和、等邊三角形的判定與性質(zhì)以及三角函數(shù)等知識.此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.9、B【分析】根據(jù)概率公式直接解答即可.【詳解】∵共有四個景點,分別是永寧瞻勝、萬芳華臺、絲路花雨、九州花境,∴他選擇的景點恰為絲路花雨的概率為;故選:B.【點睛】本題考查了概率的知識.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.10、D【分析】由題意可以判斷△ADE為等腰直角三角形,即可解決問題.【詳解】解:如圖,由旋轉(zhuǎn)變換的性質(zhì)知:∠EAD=∠CAB,AE=AD;

∵△ABC為直角三角形,

∴∠CAB=90°,△ADE為等腰直角三角形,

∴∠AED=45°,

故選:D.【點睛】該題考查了旋轉(zhuǎn)變換的性質(zhì)及其應(yīng)用問題;應(yīng)牢固掌握旋轉(zhuǎn)變換的性質(zhì).11、D【分析】連接OA、OB,根據(jù)同弧所對的圓周角是圓心角的一半,即可求出∠AOB=90°,再根據(jù)等腰直角三角形的性質(zhì)即可求出AB的長.【詳解】連接OA、OB,如圖,∵∠AOB=2∠ACB=2×45°=90°,∴△AOB為等腰直角三角形,∴AB=OA=2.故選:D.【點睛】此題考查的是圓周角定理和等腰直角三角形的性質(zhì),掌握同弧所對的圓周角是圓心角的一半是解決此題的關(guān)鍵.12、A【解析】直接利用銳角三角函數(shù)關(guān)系得出sinB的值.【詳解】∵在Rt△ABC中,∠ACB=90°,AC=3,AB=5,∴sinB=故選A.【點睛】此題主要考查了銳角三角函數(shù)關(guān)系,正確把握定義是解題關(guān)鍵.二、填空題(每題4分,共24分)13、20°.【分析】連接OA、OB,由弧長公式的可求得∠AOB,然后再根據(jù)同弧所對的圓周角等于圓心角的一半可得∠ACB.【詳解】解:連接OA、OB,由弧長公式的可求得∠AOB=40°,再根據(jù)同弧所對的圓周角等于圓心角的一半可得∠ACB=20°.故答案為:20°【點睛】本題考查弧長公式;圓周角定理,題目難度不大,掌握公式正確計算是解題關(guān)鍵.14、【分析】如圖,連接CE,可得AC=CE,由AC是半圓的直徑,可得OA=OC=CE,根據(jù)平行線的性質(zhì)可得∠COE=90°,根據(jù)含30°角的直角三角形的性質(zhì)可得∠CEO=30°,即可得出∠ACE=60°,利用勾股定理求出OE的長,根據(jù)S陰影=S扇形ACE-S△CEO-S扇形AOD即可得答案.【詳解】如圖,連接CE,∵AC=6,AC、CE為扇形ACB的半徑,∴CE=AC=6,∵OE//BC,∠ACB=90°,∴∠COE=180°-90°=90°,∴∠AOD=90°,∵AC是半圓的直徑,∴OA=OC=CE=3,∴∠CEO=30°,OE==,∴∠ACE=60°,∴S陰影=S扇形ACE-S△CEO-S扇形AOD=--=,故答案為:【點睛】本題考查扇形面積、含30°角的直角三角形的性質(zhì)及勾股定理,熟練掌握扇形面積公式并正確作出輔助線是解題關(guān)鍵.15、(30-2x)(20-x)=6×1.【解析】解:設(shè)道路的寬為xm,將6塊草地平移為一個長方形,長為(30-2x)m,寬為(20-x)m.可列方程(30-2x)(20-x)=6×1.16、(4,﹣2).【分析】直接利用關(guān)于原點對稱點的性質(zhì)得出答案.【詳解】解:點P的坐標是(﹣4,2),則點P關(guān)于原點的對稱點坐標是:(4,﹣2).故答案為:(4,﹣2).【點睛】本題考查點的對稱,熟記口訣:關(guān)于誰對稱,誰不變,另一個變號,關(guān)于原點對稱,兩個都變號.17、﹣1<x<1.【分析】根據(jù)圖象直接可以得出答案【詳解】如圖,從二次函數(shù)y=x2﹣2x﹣1的圖象中可以看出函數(shù)值小于0時x的取值范圍為:﹣1<x<1【點睛】此題重點考察學(xué)生對二次函數(shù)圖象的理解,抓住圖象性質(zhì)是解題的關(guān)鍵18、.【解析】試題分析:將△ABC繞點B旋轉(zhuǎn)60°,頂點C運動的路線長是就是以點B為圓心,BC為半徑所旋轉(zhuǎn)的弧,根據(jù)弧長公式即可求得.試題解析:∵AB=4,∴BC=2,所以弧長=.考點:1.弧長的計算;2.旋轉(zhuǎn)的性質(zhì).三、解答題(共78分)19、(1)A,B;;(2);(3)點Q在以點O為圓心,4為半徑的圓上;或在以點O為圓心,為半徑的圓上.【分析】(1)由題意利用“和諧三角形”以及“和諧距離”的定義進行分析求解;(2)由題意可知以BD的中點為圓心,以BD為直徑作圓此時可求點E的橫坐標t的取值范圍;(3)根據(jù)題意△OPQ是“和諧三角形”,且“和諧距離”是2,畫出圖像進行分析.【詳解】解:(1)由題意可知當(dāng)A(2,0),B(0,4)與O構(gòu)成三角形時滿足圓周角定理即能與點O組成“和諧三角形”,此時“和諧距離”為;(2)根據(jù)題意作圖,以BD的中點為圓心,以BD為直徑作圓,可知當(dāng)E在如圖位置時求點E的橫坐標t的取值范圍,解得點E的橫坐標t的取值范圍為;(3)如圖當(dāng)PQ為“和諧邊”時,點Q在以點O為圓心,為半徑的圓上;當(dāng)OQ為“和諧邊”時,點Q在以點O為圓心,4為半徑的圓上.【點睛】本題考查圓的綜合問題,熟練掌握圓的相關(guān)性質(zhì)以及理解題干定義是解題關(guān)鍵.20、(1)AC=8cm;AD=cm;(2)PC與圓⊙O相切,理由見解析【分析】(1)連結(jié)BD,如圖,根據(jù)圓周角定理由AB為直徑得∠ACB=90°,則可利用勾股定理計算出AC=8;由DC平分∠ACB得∠ACD=∠BCD=45°,根據(jù)圓周角定理得∠DAB=∠DBA=45°,則△ADB為等腰直角三角形,由勾股定理即可得出AD的長;

(2)連結(jié)OC,由PC=PE得∠PCE=∠PEC,利用三角形外角性質(zhì)得∠PEC=∠EAC+∠ACE=∠EAC+45°,加上∠CAB=90°﹣∠ABC,∠ABC=∠OCB,于是可得到∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,則∠OCE+∠PCE=90°,于是根據(jù)切線的判定定理可得PC為⊙O的切線.【詳解】(1)連結(jié)BD,如圖1所示,

∵AB為直徑,∴∠ACB=90°,在Rt△ACB中,AB=10cm,BC=6cm,∴AC==8(cm);∵DC平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°∴△ADB為等腰直角三角形,∴AD=AB=(cm);(2)PC與圓⊙O相切.理由如下:連結(jié)OC,如圖2所示:

∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠CAB=90°﹣∠ABC,∠ABC=∠OCB,∴∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC為⊙O的切線.【點睛】本題考查了切線的性質(zhì)和判定,切線長定理,圓周角定理,是圓的綜合題,綜合性比較強,難度適中,熟練掌握直線與圓的位置關(guān)系的判定方法是解題的關(guān)鍵.21、(1);(2)或.【分析】(1)將點A(-1,-4)代入反比例函數(shù)解析式,即可得m的值;(2)分兩種情況討論:當(dāng)P在第一象限或第三象限時,過點作于點,交x軸于點,,通過相似的性質(zhì)求出AC的長,然后求出點P的坐標,求出一次函數(shù)的解析式,即可求出k的取值范圍.【詳解】解:(1)將點A(-1,-4)代入反比例函數(shù)解析式,即可得m=4,∴反比例函數(shù)解析式是;(2)分兩種情況討論:當(dāng)P在第一象限時,如圖1,當(dāng)時,過點作于點,交x軸于點,∵,∴,,∴,∴AC=6,∴點P的縱坐標是2,把y=2代入中得x=2,∴點P的坐標是(2,2),∴,∴,∴一次函數(shù)的解析式為y=2x-2,當(dāng)時,AC>6,此時點P的縱坐標大于2,k的值變大,所以k>2,∴;當(dāng)P在第三象限時,如圖2,當(dāng)時,過點作于點,交x軸于點,∵,∴,,∴,∴AC=6,∴點P的縱坐標是-10,把y=-10代入中得x=,∴點P的坐標是(,-10),∴,∴,∴一次函數(shù)的解析式為y=-10x-14,當(dāng)時,AC>6,此時點P的縱坐標小于-10,k的值變小,所以k<-10,∴;綜上所述,的取值范圍或.【點睛】本題是函數(shù)和相似三角形的綜合題,難度較大.要緊盯著如何求點P坐標這一突破口,通過相似求出線段的長,從而解決問題.22、比賽組織者應(yīng)邀請8個隊參賽.【解析】本題可設(shè)比賽組織者應(yīng)邀請x隊參賽,則每個隊參加(x-1)場比賽,則共有場比賽,可以列出一個一元二次方程,求解,舍去小于0的值,即可得所求的結(jié)果.解:設(shè)比賽組織者應(yīng)邀請個隊參賽.依題意列方程得:,解之,得,.不合題意舍去,.答:比賽組織者應(yīng)邀請8個隊參賽.“點睛”本題是一元二次方程的求法,雖然不難求出x的值,但要注意舍去不合題意的解.23、(1)頂點;(2)是直角三角形.【分析】(1)根據(jù)點A和點B的坐標設(shè)函數(shù)解析式為兩點式,再將點C的坐標代入求出a的值,最后再將兩點式化為一般式即可得出答案;(2)根據(jù)BCD三點的坐標分別求出BC、CD和BD邊的長度即可得出答案.【詳解】解:(1)設(shè),將代入解析式得:頂點(2)是直角三角形.【點睛】本題考查的是二次函數(shù),難度適中,解題關(guān)鍵是根據(jù)題目意思靈活設(shè)出二次函數(shù)的解析式.24、(1)見解析(2)公平,理由見解析【分析】(1)用列表法將所有等可能的結(jié)果一一列舉出來即可;(2)求得兩人獲勝的概率,若相等則公平,否則不公平.【詳解】解:(1)根據(jù)題意列表得:(2)由列表得:共16種情況,其中奇數(shù)有8種,偶數(shù)有8種,∴和為偶數(shù)和和為奇數(shù)的概率均為,∴這個游戲公平.點評:本題考查了游戲公平性及列表與列樹形圖的知識,難度不大,是經(jīng)常出現(xiàn)的一個知識點.25、(1)見解析;(2);;(3)面積為.【分析】(1)過點M作MF⊥AB于F,作MG⊥BC于G,由正方形的性質(zhì)得出∠ABD=∠DBC=45°,由角平分線的性質(zhì)得出MF=MG,證得四邊形FBGM是正方形,得出∠FMG=90°,證出∠AMF=∠NMG,證明△AMF≌△NMG,即可得出結(jié)論;(2)證明Rt△AM

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論