2023屆山西省九年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第1頁
2023屆山西省九年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第2頁
2023屆山西省九年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第3頁
2023屆山西省九年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第4頁
2023屆山西省九年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第5頁
免費預(yù)覽已結(jié)束,剩余13頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,在Rt△ABC中,∠ACB=90°,⊙O是△ABC的內(nèi)切圓,三個切點分別為D、E、F,若BF=2,AF=3,則△ABC的面積是()A.6 B.7 C. D.122.在Rt△ABC中,∠C=90°,AC=4,BC=3,則是A. B. C. D.3.已知,且α是銳角,則α的度數(shù)是()A.30° B.45° C.60° D.不確定4.平面直角坐標(biāo)系內(nèi)一點關(guān)于原點對稱點的坐標(biāo)是()A. B. C. D.5.某林業(yè)部門要考察某幼苗的成活率,于是進(jìn)行了試驗,下表中記錄了這種幼苗在一定條件下移植的成活情況,則下列說法不正確的是()移植總數(shù)400150035007000900014000成活數(shù)369133532036335807312628成活的頻率09230.89009150.9050.8970.902A.由此估計這種幼苗在此條件下成活的概率約為0.9B.如果在此條件下再移植這種幼苗20000株,則必定成活18000株C.可以用試驗次數(shù)累計最多時的頻率作為概率的估計值D.在大量重復(fù)試驗中,隨著試驗次數(shù)的增加,幼苗成活的頻率會越來越穩(wěn)定,因此可以用頻率估計概率6.將拋物線y=x2﹣4x﹣4向左平移3個單位,再向上平移5個單位,得到拋物線的函數(shù)表達(dá)式為()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣37.在雙曲線的每一分支上,y都隨x的增大而增大,則k的值可以是()A.2 B.3 C.0 D.18.在Rt△ABC中,∠C=90°,若斜邊AB是直角邊BC的3倍,則tanB的值是()A. B.3 C. D.29.如圖是由6個大小相同的小正方體疊成的幾何體,則它的主視圖是()A. B.C. D.10.二次函數(shù)的圖象如右圖所示,若,,則()A., B., C., D.,二、填空題(每小題3分,共24分)11.如果A地到B地的路程為80千米,那么汽車從A地到B地的速度x千米/時和時間y時之間的函數(shù)解析式為______.12.某公司生產(chǎn)一種飲料是由A,B兩種原料液按一定比例配成,其中A原料液的原成本價為10元/千克,B原料液的原成本價為5元/千克,按原售價銷售可以獲得50%的利潤率,由于物價上漲,現(xiàn)在A原料液每千克上漲20%,B原料液每千克上漲40%,配制后的飲料成本增加了,公司為了拓展市場,打算再投入現(xiàn)在成本的25%做廣告宣傳,如果要保證該種飲料的利潤率不變,則這種飲料現(xiàn)在的售價應(yīng)比原來的售價高_(dá)____元/千克.13.為測量學(xué)校旗桿的高度,小明的測量方法如下:如圖,將直角三角形硬紙板DEF的斜邊DF與地面保持平行,并使邊DE與旗桿頂點A在同一直線上.測得DE=0.5米,EF=0.25米,目測點D到地面的距離DG=1.5米,到旗桿的水平距離DC=20米.按此方法,請計算旗桿的高度為_____米.14.拋物線的頂點坐標(biāo)是______.15.如圖,在中,點D、E分別在AB、AC邊上,,,,則__________.16.將二次函數(shù)y=x2﹣1的圖象向上平移3個單位長度,得到的圖象所對應(yīng)的函數(shù)表達(dá)式是_____.17.已知y=x2+(1﹣a)x+2是關(guān)于x的二次函數(shù),當(dāng)x的取值范圍是0≤x≤4時,y僅在x=4時取得最大值,則實數(shù)a的取值范圍是_____.18.已知關(guān)于的方程有兩個不相等的實數(shù)根,則的取值范圍是__________.三、解答題(共66分)19.(10分)如圖,在△ABC中,AB=10,AC=8,D、E分別是AB、AC上的點,且AD=4,∠BDE+∠C=180°.求AE的長.20.(6分)如圖,已知是的外接圓,圓心在的外部,,,求的半徑.21.(6分)如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,過點A作AD平分∠BAC,交⊙O于點D,過點D作DE∥BC交AC的延長線于點E.(1)依據(jù)題意,補全圖形(尺規(guī)作圖,保留痕跡);(2)判斷并證明:直線DE與⊙O的位置關(guān)系;(3)若AB=10,BC=8,求CE的長.22.(8分)已知:中,.(1)求作:的外接圓;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)(2)若的外接圓的圓心到邊的距離為4,,求的面積.23.(8分)如圖,以AB邊為直徑的⊙O經(jīng)過點P,C是⊙O上一點,連結(jié)PC交AB于點E,且∠ACP=60°,PA=PD.(1)試判斷PD與⊙O的位置關(guān)系,并說明理由;(2)若點C是弧AB的中點,已知AB=4,求CE?CP的值.24.(8分)解方程:x2﹣2x﹣5=1.25.(10分)在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c經(jīng)過A(0,﹣4)和B(2,0)兩點.(1)求c的值及a,b滿足的關(guān)系式;(2)若拋物線在A和B兩點間,從左到右上升,求a的取值范圍;(3)拋物線同時經(jīng)過兩個不同的點M(p,m),N(﹣2﹣p,n).①若m=n,求a的值;②若m=﹣2p﹣3,n=2p+1,求a的值.26.(10分)我國于2019年6月5日首次完成運載火箭海.上發(fā)射,這標(biāo)志著我國火箭發(fā)射技術(shù)達(dá)到了一個嶄新的高度.如圖,運載火箭從海面發(fā)射站點處垂直海面發(fā)射,當(dāng)火箭到達(dá)點處時,海岸邊處的雷達(dá)站測得點到點的距離為千米,仰角為.火箭繼續(xù)直線上升到達(dá)點處,此時海岸邊處的雷達(dá)測得點的仰角增加,求此時火箭所在點處與處的距離.(保留根號)

參考答案一、選擇題(每小題3分,共30分)1、A【解析】利用切線的性質(zhì)以及正方形的判定方法得出四邊形OECD是正方形,進(jìn)而利用勾股定理得出答案.【詳解】連接DO,EO,∵⊙O是△ABC的內(nèi)切圓,切點分別為D,E,F(xiàn),∴OE⊥AC,OD⊥BC,CD=CE,BD=BF=3,AF=AE=4又∵∠C=90°,∴四邊形OECD是矩形,又∵EO=DO,∴矩形OECD是正方形,設(shè)EO=x,則EC=CD=x,在Rt△ABC中BC2+AC2=AB2故(x+2)2+(x+3)2=52,解得:x=1,∴BC=3,AC=4,∴S△ABC=×3×4=6,故選A.【點睛】此題主要考查了三角形內(nèi)切圓與內(nèi)心,得出四邊形OECF是正方形是解題關(guān)鍵.2、A【分析】根據(jù)題意畫出圖形,由勾股定理求出AB的長,再根據(jù)三角函數(shù)的定義解答即可.【詳解】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB==5,∴sinA=,故選A.【點睛】本題考查銳角三角函數(shù)的定義.關(guān)鍵是熟練掌握在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.3、C【分析】根據(jù)sin60°=解答即可.【詳解】解:∵α為銳角,sinα=,sin60°=,∴α=60°.故選:C.【點睛】本題考查的是特殊角的三角函數(shù)值,熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.4、D【分析】根據(jù)“平面直角坐標(biāo)系中任意一點P(x,y),關(guān)于原點的對稱點是(-x,-y),即關(guān)于原點的對稱點,橫縱坐標(biāo)都變成相反數(shù)”解答.【詳解】解:根據(jù)關(guān)于原點對稱的點的坐標(biāo)的特點,∴點A(-2,3)關(guān)于原點對稱的點的坐標(biāo)是(2,-3),故選D.【點睛】本題主要考查點關(guān)于原點對稱的特征,解決本題的關(guān)鍵是要熟練掌握點關(guān)于原點對稱的特征.5、B【分析】大量重復(fù)試驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率即可得到答案.【詳解】解:由此估計這種幼苗在此條件下成活的概率約為0.9,故A選項正確;如果在此條件下再移植這種幼苗20000株,則大約成活18000株,故B選項錯誤;可以用試驗次數(shù)累計最多時的頻率作為概率的估計值,故C選項正確;在大量重復(fù)試驗中,隨著試驗次數(shù)的增加,幼苗成活的頻率會越來越穩(wěn)定,因此可以用頻率估計概率,故D選項正確.故選:B.【點睛】本題主要考查的是利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率,掌握這個知識點是解題的關(guān)鍵.6、D【詳解】因為y=x2-4x-4=(x-2)2-8,以拋物線y=x2-4x-4的頂點坐標(biāo)為(2,-8),把點(2,-8)向左平移1個單位,再向上平移5個單位所得對應(yīng)點的坐標(biāo)為(-1,-1),所以平移后的拋物線的函數(shù)表達(dá)式為y=(x+1)2-1.故選D.7、C【分析】根據(jù)反比例函數(shù)的性質(zhì):當(dāng)k-1<0時,在每一個象限內(nèi),函數(shù)值y隨著自變量x的增大而增大作答.【詳解】∵在雙曲線的每一條分支上,y都隨x的增大而增大,∴k-1<0,∴k<1,故選:C.【點睛】本題考查了反比例函數(shù)的性質(zhì).對于反比例函數(shù),當(dāng)k>0時,在每一個象限內(nèi),函數(shù)值y隨自變量x的增大而減??;當(dāng)k<0時,在每一個象限內(nèi),函數(shù)值y隨自變量x增大而增大.8、D【分析】先求出AC,再根據(jù)正切的定義求解即可.【詳解】設(shè)BC=x,則AB=3x,由勾股定理得,AC=,tanB===,故選D.考點:1.銳角三角函數(shù)的定義;2.勾股定理.9、C【分析】找到從正面看所得到的圖形即可.【詳解】解:它的主視圖是:故選:C.【點睛】本題考查了三視圖的知識,掌握主視圖是解題的關(guān)鍵.10、A【分析】由于當(dāng)x=2.5時,,再根據(jù)對稱軸得出b=-2a,即可得出5a+4c>0,因此可以判斷M的符號;由于當(dāng)x=1時,y=a+b+c>0,因此可以判斷N的符號;【詳解】解:∵當(dāng)x=2.5時,y=,∴25a+10b+4c>0,,∴b=-2a,

∴25a-20a+4c>0,即5a+4c>0,

∴M>0,

∵當(dāng)x=1時,y=a+b+c>0,

∴N>0,

故選:A.【點睛】此題主要考查了二次函數(shù)圖象與系數(shù)的關(guān)系,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.二、填空題(每小題3分,共24分)11、【分析】根據(jù)速度=路程÷時間,即可得出y與x的函數(shù)關(guān)系式.【詳解】解:∵速度=路程÷時間,∴故答案為:【點睛】本題考查了根據(jù)行程問題得到反比例函數(shù)關(guān)系式,熟練掌握常見問題的數(shù)量關(guān)系是解答本題的關(guān)鍵.12、1【分析】設(shè)配制比例為1:x,則A原液上漲后的成本是10(1+20%)元,B原液上漲后的成本是5(1+40%)x元,配制后的總成本是(10+5x)(1+),根據(jù)題意可得方程10(1+20%)+5(1+40%)x=(10+5x)(1+),解可得配制比例,然后計算出原來每千克的成本和售價,然后表示出此時每千克成本和售價,即可算出此時售價與原售價之差.【詳解】解:設(shè)配制比例為1:x,由題意得:10(1+20%)+5(1+40%)x=(10+5x)(1+),解得x=4,則原來每千克成本為:=1(元),原來每千克售價為:1×(1+50%)=9(元),此時每千克成本為:1×(1+)(1+25%)=10(元),此時每千克售價為:10×(1+50%)=15(元),則此時售價與原售價之差為:15﹣9=1(元).故答案為:1.【點睛】本題考查了一元一次方程的應(yīng)用,仔細(xì)閱讀題目,找到關(guān)系式是解題的關(guān)鍵.13、11.1【解析】根據(jù)題意證出△DEF∽△DCA,進(jìn)而利用相似三角形的性質(zhì)得出AC的長,即可得出答案.【詳解】由題意得:∠DEF=∠DCA=90°,∠EDF=∠CDA,∴△DEF∽△DCA,則,即,解得:AC=10,故AB=AC+BC=10+1.1=11.1(米),即旗桿的高度為11.1米.故答案為11.1.【點睛】本題考查了相似三角形的應(yīng)用;由三角形相似得出對應(yīng)邊成比例是解題的關(guān)鍵.14、(1,3)【分析】根據(jù)頂點式:的頂點坐標(biāo)為(h,k)即可求出頂點坐標(biāo).【詳解】解:由頂點式可知:的頂點坐標(biāo)為:(1,3).故答案為(1,3).【點睛】此題考查的是求頂點坐標(biāo),掌握頂點式:的頂點坐標(biāo)為(h,k)是解決此題的關(guān)鍵.15、【分析】由,,即可求得的長,又由,根據(jù)平行線分線段成比例定理,可得,則可求得答案.【詳解】解:,,,,,.故答案為:.【點睛】此題考查了相似三角形的判定和性質(zhì),此題比較簡單,注意掌握比例線段的對應(yīng)關(guān)系是解此題的關(guān)鍵.16、y=x1+1【解析】分析:先確定二次函數(shù)y=x1﹣1的頂點坐標(biāo)為(0,﹣1),再根據(jù)點平移的規(guī)律得到點(0,﹣1)平移后所得對應(yīng)點的坐標(biāo)為(0,1),然后根據(jù)頂點式寫出平移后的拋物線解析式.詳解:二次函數(shù)y=x1﹣1的頂點坐標(biāo)為(0,﹣1),把點(0,﹣1)向上平移3個單位長度所得對應(yīng)點的坐標(biāo)為(0,1),所以平移后的拋物線解析式為y=x1+1.故答案為y=x1+1.點睛:本題考查了二次函數(shù)圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標(biāo),利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標(biāo),即可求出解析式.17、a<1【分析】先求出拋物線的對稱軸,再根據(jù)二次函數(shù)的增減性列出不等式,求解即可.【詳解】解:∵0≤x≤4時,y僅在x=4時取得最大值,∴﹣<,解得a<1.故答案為:a<1.【點睛】本題考查了二次函數(shù)的最值問題,熟練掌握二次函數(shù)的增減性和對稱軸公式是解題的關(guān)鍵.18、且【分析】根據(jù)根的判別式和一元一次方程的定義得到關(guān)于的不等式,求出的取值即可.【詳解】關(guān)于的一元二次方程有兩個不相等的實數(shù)根,∵,∴且,

解得:且,

故答案為:且.【點睛】本題考查了根的判別式和一元二次方程的定義,能根據(jù)題意得出關(guān)于的不等式是解此題的關(guān)鍵.三、解答題(共66分)19、AE=5【分析】根據(jù)∠BDE+∠C=180°可得出C=ADE,繼而可證明△ADE∽△ACB,再利用相似三角形的性質(zhì)求解即可.【詳解】解:∵BDE+C=180°BDE+ADE=180°∴C=ADE∵A=A∴∴∴∴AE=5【點睛】本題考查的知識點是相似三角形的判定及性質(zhì),利用已知條件得出C=ADE,是解此題的關(guān)鍵.20、4【解析】已知△ABC是等腰三角形,根據(jù)等腰三角形的性質(zhì),作于點,則直線為的中垂線,直線過點,在Rt△OBH中,用半徑表示出OH的長,即可用勾股定理求得半徑的長.【詳解】作于點,則直線為的中垂線,直線過點,,,,即,.【點睛】考查垂徑定理以及勾股定理,掌握垂徑定理是解題的關(guān)鍵.21、(1)見解析;(3)直線DE是⊙O的切線,證明見解析;(3)3.3或4.3【分析】(1)依據(jù)題意,利用尺規(guī)作圖技巧補全圖形即可;(3)由題意連結(jié)OD,交BC于F,判斷并證明OD⊥DE于D以此證明直線DE與⊙O的位置關(guān)系;(3)由題意根據(jù)相關(guān)條件證明平行四邊形CFDE是矩形,從而進(jìn)行分析求解.【詳解】(1)如圖.(3)判斷:直線DE是⊙O的切線.證明:連結(jié)OD,交BC于F.∵AD平分∠BAC,∴∠BAD=∠CAD.∴.∴OD⊥BC于F.∵DE∥BC,∴OD⊥DE于D.∴直線DE是⊙O的切線.(3)∵AB是⊙O的直徑,∴∠ACB=90°.∵AB=10,BC=8,∴AC=1.∵∠BOF=∠ACB=90°,∴OD∥AC.∵O是AB中點,∴OF==3.∵OD==5,∴DF=3.∵DE∥BC,OD∥AC,∴四邊形CFDE是平行四邊形.∵∠ODE=90°,∴平行四邊形CFDE是矩形.∴CE=DF=3.【點睛】本題結(jié)合圓考查圓的尺規(guī)作圖以及圓的切線定義和矩形的證明,分別掌握其方法定義進(jìn)行分析.22、(1)詳見解析;(2)【分析】(1)分別作出AB、BC的垂直平分線,兩條垂直平分線的交點即是圓的圓心,以O(shè)為圓心,OB為半徑作圓即可,如圖所示.(2)已知的外接圓的圓心到邊的距離為4,,利用勾股定理即可求出OB2,再根據(jù)圓的面積公式即可求解.【詳解】解:(1)如圖(2)設(shè)BC的垂直平分線交BC于點D由題意得:,在Rt中,∴【點睛】本題主要考查的是圓的外接三角形尺規(guī)作圖法和勾股定理的應(yīng)用,掌握這兩個知識點是解題的關(guān)鍵.23、(1)PD是⊙O的切線.證明見解析.(2)1.【解析】試題分析:(1)連結(jié)OP,根據(jù)圓周角定理可得∠AOP=2∠ACP=120°,然后計算出∠PAD和∠D的度數(shù),進(jìn)而可得∠OPD=90°,從而證明PD是⊙O的切線;(2)連結(jié)BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC長,再證明△CAE∽△CPA,進(jìn)而可得,然后可得CE?CP的值.試題解析:(1)如圖,PD是⊙O的切線.證明如下:連結(jié)OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切線.(2)連結(jié)BC,∵AB是⊙O的直徑,∴∠ACB=90°,又∵C為弧AB的中點,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP?CE=CA2=()2=1.考點:相似三角形的判定與性質(zhì);圓心角、弧、弦的關(guān)系;直線與圓的位置關(guān)系;探究型.24、x1=1+,x2=1﹣.【解析】利用完全平方公式配平方,再利用直接開方法求方程的解即可.【詳解】解:x2﹣2x+1=6,那么(x﹣1)2=6,即x﹣1=±,則x1=1+,x2=1﹣.【點睛】本題考查了配方法解一元二次方程,配方法的一般步驟:①把常數(shù)項移到等號的右邊;②把二次項的系數(shù)化為1;③等式兩邊同時加上一次項系數(shù)一半的平方.25、(1)c=﹣4,2a+b=2;(2)﹣1≤a<0或0<a≤1;(3)①a=;②a=1【分析】(1)直接將AB兩點代入解析式可求c,以及a,b之間的關(guān)系式.

(2)根據(jù)拋物線的性質(zhì)可知,當(dāng)a>0時,拋物線對稱軸右邊的y隨x增大而增大,結(jié)合拋物線對稱軸x=和A、B兩點位置列出不等式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論