2023屆四川省成都嘉祥高考仿真模擬數(shù)學(xué)試卷含解析_第1頁
2023屆四川省成都嘉祥高考仿真模擬數(shù)學(xué)試卷含解析_第2頁
2023屆四川省成都嘉祥高考仿真模擬數(shù)學(xué)試卷含解析_第3頁
2023屆四川省成都嘉祥高考仿真模擬數(shù)學(xué)試卷含解析_第4頁
2023屆四川省成都嘉祥高考仿真模擬數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)函數(shù),若在上有且僅有5個零點(diǎn),則的取值范圍為()A. B. C. D.2.設(shè),,是非零向量.若,則()A. B. C. D.3.已知點(diǎn)是拋物線:的焦點(diǎn),點(diǎn)為拋物線的對稱軸與其準(zhǔn)線的交點(diǎn),過作拋物線的切線,切點(diǎn)為,若點(diǎn)恰好在以,為焦點(diǎn)的雙曲線上,則雙曲線的離心率為()A. B. C. D.4.在四邊形中,,,,,,點(diǎn)在線段的延長線上,且,點(diǎn)在邊所在直線上,則的最大值為()A. B. C. D.5.已知雙曲線的一條漸近線方程為,則雙曲線的離心率為()A. B. C. D.6.如圖,在矩形中的曲線分別是,的一部分,,,在矩形內(nèi)隨機(jī)取一點(diǎn),若此點(diǎn)取自陰影部分的概率為,取自非陰影部分的概率為,則()A. B. C. D.大小關(guān)系不能確定7.函數(shù)的部分圖象如圖所示,則的單調(diào)遞增區(qū)間為()A. B.C. D.8.設(shè)集合,,則集合A. B. C. D.9.已知直線與直線則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件10.已知雙曲線的右焦點(diǎn)為,過原點(diǎn)的直線與雙曲線的左、右兩支分別交于兩點(diǎn),延長交右支于點(diǎn),若,則雙曲線的離心率是()A. B. C. D.11.記為數(shù)列的前項(xiàng)和數(shù)列對任意的滿足.若,則當(dāng)取最小值時(shí),等于()A.6 B.7 C.8 D.912.已知數(shù)列是公差為的等差數(shù)列,且成等比數(shù)列,則()A.4 B.3 C.2 D.1二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)為偶函數(shù),則.14.已知函數(shù),若關(guān)于的方程恰有四個不同的解,則實(shí)數(shù)的取值范圍是______.15.己知函數(shù),若關(guān)于的不等式對任意的恒成立,則實(shí)數(shù)的取值范圍是______.16.已知數(shù)列滿足,,若,則數(shù)列的前n項(xiàng)和______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(mR)的導(dǎo)函數(shù)為.(1)若函數(shù)存在極值,求m的取值范圍;(2)設(shè)函數(shù)(其中e為自然對數(shù)的底數(shù)),對任意mR,若關(guān)于x的不等式在(0,)上恒成立,求正整數(shù)k的取值集合.18.(12分)在中,內(nèi)角所對的邊分別為,已知,且.(I)求角的大小;(Ⅱ)若,求面積的取值范圍.19.(12分)在直角坐標(biāo)系中,圓C的參數(shù)方程(為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求圓C的極坐標(biāo)方程;(2)直線l的極坐標(biāo)方程是,射線與圓C的交點(diǎn)為O、P,與直線l的交點(diǎn)為Q,求線段的長.20.(12分)已知在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線與直線的直角坐標(biāo)方程;(2)若曲線與直線交于兩點(diǎn),求的值.21.(12分)以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且在兩種坐標(biāo)系中取相同的長度單位,建立極坐標(biāo)系,已知曲線,曲線(為參數(shù)),求曲線交點(diǎn)的直角坐標(biāo).22.(10分)某校為了解校園安全教育系列活動的成效,對全校學(xué)生進(jìn)行了一次安全意識測試,根據(jù)測試成績評定“合格”“不合格”兩個等級,同時(shí)對相應(yīng)等級進(jìn)行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對應(yīng)的頻率分布直方圖如下:等級不合格合格得分頻數(shù)624(1)由該題中頻率分布直方圖求測試成績的平均數(shù)和中位數(shù);(2)其他條件不變,在評定等級為“合格”的學(xué)生中依次抽取2人進(jìn)行座談,每次抽取1人,求在第1次抽取的測試得分低于80分的前提下,第2次抽取的測試得分仍低于80分的概率;(3)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學(xué)生中抽取10人進(jìn)行座談.現(xiàn)再從這10人中任選4人,記所選4人的量化總分為,求的數(shù)學(xué)期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

由求出范圍,結(jié)合正弦函數(shù)的圖象零點(diǎn)特征,建立不等量關(guān)系,即可求解.【詳解】當(dāng)時(shí),,∵在上有且僅有5個零點(diǎn),∴,∴.故選:A.【點(diǎn)睛】本題考查正弦型函數(shù)的性質(zhì),整體代換是解題的關(guān)鍵,屬于基礎(chǔ)題.2.D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點(diǎn):平面向量數(shù)量積.【思路點(diǎn)睛】幾何圖形中向量的數(shù)量積問題是近幾年高考的又一熱點(diǎn),作為一類既能考查向量的線性運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及平面幾何知識,又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問題,實(shí)有其合理之處.解決此類問題的常用方法是:①利用已知條件,結(jié)合平面幾何知識及向量數(shù)量積的基本概念直接求解(較易);②將條件通過向量的線性運(yùn)算進(jìn)行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標(biāo)運(yùn)算,此法對解含垂直關(guān)系的問題往往有很好效果.3.D【解析】

根據(jù)拋物線的性質(zhì),設(shè)出直線方程,代入拋物線方程,求得k的值,設(shè)出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【詳解】直線F2A的直線方程為:y=kx,F(xiàn)1(0,),F(xiàn)2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設(shè)雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【點(diǎn)睛】本題考查拋物線及雙曲線的方程及簡單性質(zhì),考查轉(zhuǎn)化思想,考查計(jì)算能力,屬于中檔題.4.A【解析】

依題意,如圖以為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,表示出點(diǎn)的坐標(biāo),根據(jù)求出的坐標(biāo),求出邊所在直線的方程,設(shè),利用坐標(biāo)表示,根據(jù)二次函數(shù)的性質(zhì)求出最大值.【詳解】解:依題意,如圖以為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,由,,,,,,,因?yàn)辄c(diǎn)在線段的延長線上,設(shè),解得,所在直線的方程為因?yàn)辄c(diǎn)在邊所在直線上,故設(shè)當(dāng)時(shí)故選:【點(diǎn)睛】本題考查向量的數(shù)量積,關(guān)鍵是建立平面直角坐標(biāo)系,屬于中檔題.5.B【解析】

由題意得出的值,進(jìn)而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點(diǎn)睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計(jì)算較為方便,考查計(jì)算能力,屬于基礎(chǔ)題.6.B【解析】

先用定積分求得陰影部分一半的面積,再根據(jù)幾何概型概率公式可求得.【詳解】根據(jù)題意,陰影部分的面積的一半為:,于是此點(diǎn)取自陰影部分的概率為.又,故.故選B.【點(diǎn)睛】本題考查了幾何概型,定積分的計(jì)算以及幾何意義,屬于中檔題.7.D【解析】

由圖象可以求出周期,得到,根據(jù)圖象過點(diǎn)可求,根據(jù)正弦型函數(shù)的性質(zhì)求出單調(diào)增區(qū)間即可.【詳解】由圖象知,所以,,又圖象過點(diǎn),所以,故可取,所以令,解得所以函數(shù)的單調(diào)遞增區(qū)間為故選:.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),利用“五點(diǎn)法”求函數(shù)解析式,屬于中檔題.8.B【解析】

先求出集合和它的補(bǔ)集,然后求得集合的解集,最后取它們的交集得出結(jié)果.【詳解】對于集合A,,解得或,故.對于集合B,,解得.故.故選B.【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查對數(shù)不等式的解法,考查集合的補(bǔ)集和交集的運(yùn)算.對于有兩個根的一元二次不等式的解法是:先將二次項(xiàng)系數(shù)化為正數(shù),且不等號的另一邊化為,然后通過因式分解,求得對應(yīng)的一元二次方程的兩個根,再利用“大于在兩邊,小于在中間”來求得一元二次不等式的解集.9.B【解析】

利用充分必要條件的定義可判斷兩個條件之間的關(guān)系.【詳解】若,則,故或,當(dāng)時(shí),直線,直線,此時(shí)兩條直線平行;當(dāng)時(shí),直線,直線,此時(shí)兩條直線平行.所以當(dāng)時(shí),推不出,故“”是“”的不充分條件,當(dāng)時(shí),可以推出,故“”是“”的必要條件,故選:B.【點(diǎn)睛】本題考查兩條直線的位置關(guān)系以及必要不充分條件的判斷,前者應(yīng)根據(jù)系數(shù)關(guān)系來考慮,后者依據(jù)兩個條件之間的推出關(guān)系,本題屬于中檔題.10.D【解析】

設(shè)雙曲線的左焦點(diǎn)為,連接,,,設(shè),則,,,和中,利用勾股定理計(jì)算得到答案.【詳解】設(shè)雙曲線的左焦點(diǎn)為,連接,,,設(shè),則,,,,根據(jù)對稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.【點(diǎn)睛】本題考查了雙曲線離心率,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.11.A【解析】

先令,找出的關(guān)系,再令,得到的關(guān)系,從而可求出,然后令,可得,得出數(shù)列為等差數(shù)列,得,可求出取最小值.【詳解】解法一:由,所以,由條件可得,對任意的,所以是等差數(shù)列,,要使最小,由解得,則.解法二:由賦值法易求得,可知當(dāng)時(shí),取最小值.故選:A【點(diǎn)睛】此題考查的是由數(shù)列的遞推式求數(shù)列的通項(xiàng),采用了賦值法,屬于中檔題.12.A【解析】

根據(jù)等差數(shù)列和等比數(shù)列公式直接計(jì)算得到答案.【詳解】由成等比數(shù)列得,即,已知,解得.故選:.【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列的基本量的計(jì)算,意在考查學(xué)生的計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】試題分析:由函數(shù)為偶函數(shù)函數(shù)為奇函數(shù),.考點(diǎn):函數(shù)的奇偶性.【方法點(diǎn)晴】本題考查導(dǎo)函數(shù)的奇偶性以及邏輯思維能力、等價(jià)轉(zhuǎn)化能力、運(yùn)算求解能力、特殊與一般思想、數(shù)形結(jié)合思想與轉(zhuǎn)化思想,具有一定的綜合性和靈活性,屬于較難題型.首先利用轉(zhuǎn)化思想,將函數(shù)為偶函數(shù)轉(zhuǎn)化為函數(shù)為奇函數(shù),然后再利用特殊與一般思想,取.14.【解析】

設(shè),判斷為偶函數(shù),考慮x>0時(shí),的解析式和零點(diǎn)個數(shù),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,作函數(shù)大致圖象,即可得到的范圍.【詳解】設(shè),則在是偶函數(shù),當(dāng)時(shí),,由得,記,,,故函數(shù)在增,而,所以在減,在增,,當(dāng)時(shí),,當(dāng)時(shí),,因此的圖象為因此實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查了函數(shù)的零點(diǎn)的個數(shù)問題,涉及構(gòu)造函數(shù),函數(shù)的奇偶性,利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,考查了數(shù)形結(jié)合思想方法,以及化簡運(yùn)算能力和推理能力,屬于難題.15.【解析】

首先判斷出函數(shù)為定義在上的奇函數(shù),且在定義域上單調(diào)遞增,由此不等式對任意的恒成立,可轉(zhuǎn)化為在上恒成立,進(jìn)而建立不等式組,解出即可得到答案.【詳解】解:函數(shù)的定義域?yàn)?,且,函?shù)為奇函數(shù),當(dāng)時(shí),函數(shù),顯然此時(shí)函數(shù)為增函數(shù),函數(shù)為定義在上的增函數(shù),不等式即為,在上恒成立,,解得.故答案為.【點(diǎn)睛】本題考查函數(shù)單調(diào)性及奇偶性的綜合運(yùn)用,考查不等式的恒成立問題,屬于常規(guī)題目.16.【解析】

,求得的通項(xiàng),進(jìn)而求得,得通項(xiàng)公式,利用等比數(shù)列求和即可.【詳解】由題為等差數(shù)列,∴,∴,∴,∴,故答案為【點(diǎn)睛】本題考查求等差數(shù)列數(shù)列通項(xiàng),等比數(shù)列求和,熟記等差等比性質(zhì),熟練運(yùn)算是關(guān)鍵,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2){1,2}.【解析】

(1)求解導(dǎo)數(shù),表示出,再利用的導(dǎo)數(shù)可求m的取值范圍;(2)表示出,結(jié)合二次函數(shù)知識求出的最小值,再結(jié)合導(dǎo)數(shù)及基本不等式求出的最值,從而可求正整數(shù)k的取值集合.【詳解】(1)因?yàn)椋?,所以,則,由題意可知,解得;(2)由(1)可知,,所以因?yàn)檎淼茫O(shè),則,所以單調(diào)遞增,又因?yàn)椋源嬖?,使得,設(shè),是關(guān)于開口向上的二次函數(shù),則,設(shè),則,令,則,所以單調(diào)遞增,因?yàn)?,所以存在,使得,即,?dāng)時(shí),,當(dāng)時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,因?yàn)?,所以,又由題意可知,所以,解得,所以正整數(shù)k的取值集合為{1,2}.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,利用導(dǎo)數(shù)研究極值問題一般轉(zhuǎn)化為導(dǎo)數(shù)的零點(diǎn)問題,恒成立問題要逐步消去參數(shù),轉(zhuǎn)化為最值問題求解,適當(dāng)構(gòu)造函數(shù)是轉(zhuǎn)化的關(guān)鍵,本題綜合性較強(qiáng),難度較大,側(cè)重考查數(shù)學(xué)抽象和邏輯推理的核心素養(yǎng).18.(Ⅰ);(Ⅱ)【解析】

(I)根據(jù),利用二倍角公式得到,再由輔助角公式得到,然后根據(jù)正弦函數(shù)的性質(zhì)求解.(Ⅱ)根據(jù)(I)由余弦定理得到,再利用重要不等式得到,然后由求解.【詳解】(I)因?yàn)椋?,,,或,或,因?yàn)椋运?;(Ⅱ)由余弦定理得:,所以,所以,?dāng)且僅當(dāng)取等號,又因?yàn)?,所以,所以【點(diǎn)睛】本題主要考查二倍角公式,輔助角公式以及余弦定理,還考查了運(yùn)算求解的能力,屬于中檔題.19.(1);(2)2【解析】

(1)首先利用對圓C的參數(shù)方程(φ為參數(shù))進(jìn)行消參數(shù)運(yùn)算,化為普通方程,再根據(jù)普通方程化極坐標(biāo)方程的公式得到圓C的極坐標(biāo)方程.(2)設(shè),聯(lián)立直線與圓的極坐標(biāo)方程,解得;設(shè),聯(lián)立直線與直線的極坐標(biāo)方程,解得,可得.【詳解】(1)圓C的普通方程為,又,所以圓C的極坐標(biāo)方程為.(2)設(shè),則由解得,,得;設(shè),則由解得,,得;所以【點(diǎn)睛】本題考查圓的參數(shù)方程與普通方程的互化,考查圓的極坐標(biāo)方程,考查極坐標(biāo)方程的求解運(yùn)算,考查了學(xué)生的計(jì)算能力以及轉(zhuǎn)化能力,屬于基礎(chǔ)題.20.(1)曲線的直角坐標(biāo)方程為;直線的直角坐標(biāo)方程為(2)【解析】

(1)由公式可化極坐標(biāo)方程為直角坐標(biāo)方程,消參法可化參數(shù)方程為普通方程;(2)聯(lián)立兩曲線方程,解方程組得兩交點(diǎn)坐標(biāo),從而得兩點(diǎn)間距離.【詳解】解:(1)曲線的直角坐標(biāo)方程為直線的直角坐標(biāo)方程為(2)據(jù)解,得或【點(diǎn)睛】本題考查極坐標(biāo)與直角坐標(biāo)的互化,考查參數(shù)方程與普通方程的互化,屬于基礎(chǔ)題.21.【解析】

利用極坐標(biāo)方程與普通方程、參

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論