2022-2023學(xué)年山東省萊蕪市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2022-2023學(xué)年山東省萊蕪市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2022-2023學(xué)年山東省萊蕪市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2022-2023學(xué)年山東省萊蕪市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2022-2023學(xué)年山東省萊蕪市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩30頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年山東省萊蕪市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.在空間中,方程y=x2表示()A.xOy平面的曲線B.母線平行于Oy軸的拋物柱面C.母線平行于Oz軸的拋物柱面D.拋物面

2.微分方程y''-2y'=x的特解應(yīng)設(shè)為

A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+c

3.

4.A.A.

B.0

C.

D.1

5.

6.

7.()。A.收斂且和為0

B.收斂且和為α

C.收斂且和為α-α1

D.發(fā)散

8.平衡物體發(fā)生自鎖現(xiàn)象的條件為()。

A.0≤α≤φ

B.0≤φ≤α

C.0<α<90。

D.0<φ<90。

9.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x

10.設(shè)Y=e-3x,則dy等于().

A.e-3xdx

B.-e-3xdx

C.-3e-3xdx

D.3e-3xdx

11.設(shè)f(0)=0,且存在,則等于().A.A.f'(x)B.f'(0)C.f(0)D.f(x)

12.

13.當(dāng)a→0時(shí),2x2+3x是x的().A.A.高階無(wú)窮小B.等價(jià)無(wú)窮小C.同階無(wú)窮小,但不是等價(jià)無(wú)窮小D.低階無(wú)窮小

14.

A.

B.

C.

D.

15.

16.設(shè)y=2x3,則dy=().

A.2x2dx

B.6x2dx

C.3x2dx

D.x2dx

17.

18.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo),f'(x)>0,則在(0,1)內(nèi)f(x)().A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量

19.

20.

21.曲線y=x-3在點(diǎn)(1,1)處的切線斜率為()

A.-1B.-2C.-3D.-4

22.設(shè)函數(shù)y=(2+x)3,則y'=

A.(2+x)2

B.3(2+x)2

C.(2+x)4

D.3(2+x)4

23.若f(x)為[a,b]上的連續(xù)函數(shù),()。A.小于0B.大于0C.等于0D.不確定

24.

25.若x0為f(x)的極值點(diǎn),則().A.A.f(x0)必定存在,且f(x0)=0

B.f(x0)必定存在,但f(x0)不-定等于零

C.f(x0)不存在或f(x0)=0

D.f(x0)必定不存在

26.A.6YB.6XYC.3XD.3X^227.若,則下列命題中正確的有()。A.

B.

C.

D.

28.

29.函數(shù)y=f(x)在(a,b)內(nèi)二階可導(dǎo),且f'(x)>0,f"(x)<0,則曲線y=f(x)在(a,b)內(nèi)().

A.單調(diào)增加且為凹B.單調(diào)增加且為凸C.單調(diào)減少且為凹D.單調(diào)減少且為凸

30.

A.2e-2x+C

B.

C.-2e-2x+C

D.

31.A.1

B.0

C.2

D.

32.A.A.x2+cosy

B.x2-cosy

C.x2+cosy+1

D.x2-cosy+1

33.A.

B.x2

C.2x

D.

34.

35.A.A.

B.

C.

D.

36.直線l與x軸平行,且與曲線y=x-ex相切,則切點(diǎn)的坐標(biāo)是()A.A.(1,1)

B.(-1,1)

C.(0,-l)

D.(0,1)

37.

38.

39.A.A.

B.

C.

D.

40.下列命題正確的是()A.A.

B.

C.

D.

41.()。A.-2B.-1C.0D.242.()。A.3B.2C.1D.043.設(shè)是正項(xiàng)級(jí)數(shù),且un<υn(n=1,2,…),則下列命題正確的是()

A.B.C.D.44.如圖所示兩楔形塊A、B自重不計(jì),二者接觸面光滑,受大小相等、方向相反且沿同一直線的兩個(gè)力的作用,則()。

A.A平衡,B不平衡B.A不平衡,B平衡C.A、B均不平衡D.A、B均平衡

45.微分方程y"+y'=0的通解為

A.y=Ce-x

B.y=e-x+C

C.y=C1e-x+C2

D.y=e-x

46.

47.方程2x2-y2=1表示的二次曲面是()。A.球面B.柱面C.旋轉(zhuǎn)拋物面D.圓錐面

48.當(dāng)x→0時(shí),與x等價(jià)的無(wú)窮小量是()

A.

B.ln(1+x)

C.

D.x2(x+1)

49.

50.

二、填空題(20題)51.二元函數(shù)z=x2+y2+1的極小值為_(kāi)______.

52.

53.微分方程y'+4y=0的通解為_(kāi)________。

54.

55.

56.微分方程y'-2y=3的通解為_(kāi)_________。

57.58.59.60.設(shè)z=ln(x2+y),則全微分dz=__________。

61.

62.

63.64.65.66.不定積分=______.

67.

68.69.

70.

三、計(jì)算題(20題)71.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則72.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.73.求微分方程的通解.74.證明:75.76.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.77.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

78.求微分方程y"-4y'+4y=e-2x的通解.

79.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

80.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).81.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).

82.

83.求曲線在點(diǎn)(1,3)處的切線方程.84.85.

86.87.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

88.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.89.

90.

四、解答題(10題)91.

92.

93.計(jì)算94.計(jì)算95.求由曲線xy=1及直線y=x,y=2所圍圖形的面積A。96.

97.98.求方程(y-x2y)y'=x的通解.99.求微分方程的通解。

100.

五、高等數(shù)學(xué)(0題)101.

則f(x)=_________。

六、解答題(0題)102.

參考答案

1.C方程F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,故選C。

2.C本題考查了二階常系數(shù)微分方程的特解的知識(shí)點(diǎn)。

因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.

3.C解析:

4.D本題考查的知識(shí)點(diǎn)為拉格朗日中值定理的條件與結(jié)論.

可知應(yīng)選D.

5.C

6.C解析:

7.C

8.A

9.D

10.C

11.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.

由于存在,因此

可知應(yīng)選B.

12.D

13.C本題考查的知識(shí)點(diǎn)為無(wú)窮小階的比較.

應(yīng)依定義考察

由此可知,當(dāng)x→0時(shí),2x3+3x是x的同階無(wú)窮小,但不是等價(jià)無(wú)窮小,故知應(yīng)選C.

本題應(yīng)明確的是:考察當(dāng)x→x0時(shí)無(wú)窮小盧與無(wú)窮小α的階的關(guān)系時(shí),要判定極限

這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯(cuò)誤.

14.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.

由復(fù)合函數(shù)的導(dǎo)數(shù)鏈?zhǔn)椒▌t知

可知應(yīng)選C.

15.A解析:

16.B由微分基本公式及四則運(yùn)算法則可求得.也可以利用dy=y′dx求得故選B.

17.A

18.A由于f(x)在(0,1)內(nèi)有f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.

19.C解析:

20.B

21.C由導(dǎo)數(shù)的幾何意義知,若y=f(x)可導(dǎo),則曲線在點(diǎn)(x0,f(x0))處必定存在切線,且該切線的斜率為f"(x0)。由于y=x-3,y"=-3x-4,y"|x=1=-3,可知曲線y=x-3在點(diǎn)(1,1)處的切線斜率為-3,故選C。

22.B本題考查了復(fù)合函數(shù)求導(dǎo)的知識(shí)點(diǎn)。因?yàn)閥=(2+x)3,所以y'=3(2+x)2·(2+x)'=3(2+x)2.

23.C

24.D

25.C本題考查的知識(shí)點(diǎn)為函數(shù)極值點(diǎn)的性質(zhì).

若x0為函數(shù)y=f(x)的極值點(diǎn),則可能出現(xiàn)兩種情形:

(1)f(x)在點(diǎn)x0處不可導(dǎo),如y=|x|,在點(diǎn)x0=0處f(x)不可導(dǎo),但是點(diǎn)x0=0為f(x)=|x|的極值點(diǎn).

(2)f(x)在點(diǎn)x0可導(dǎo),則由極值的必要條件可知,必定有f(x0)=0.

從題目的選項(xiàng)可知應(yīng)選C.

本題常見(jiàn)的錯(cuò)誤是選A.其原因是考生將極值的必要條件:“若f(x)在點(diǎn)x0可導(dǎo),且x0為f(x)的極值點(diǎn),則必有f(x0)=0”認(rèn)為是極值的充分必要條件.

26.D

27.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)收斂性的定義。

28.C

29.B解析:本題考查的知識(shí)點(diǎn)為利用一階導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性和利用二階導(dǎo)數(shù)符號(hào)判定曲線的凹凸性.

由于在(a,b)內(nèi)f'(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,又由于f"(x)<0,可知曲線y=f(x)在(a,b)內(nèi)為凹,可知應(yīng)選B.

30.D

31.C

32.A

33.C

34.A解析:

35.A

36.C

37.C

38.C解析:

39.D本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性非齊次微分方程特解y*的取法:

40.D

41.A

42.A

43.B由正項(xiàng)級(jí)數(shù)的比較判別法可以得到,若小的級(jí)數(shù)發(fā)散,則大的級(jí)數(shù)必發(fā)散,故選B。

44.C

45.C解析:y"+y'=0,特征方程為r2+r=0,特征根為r1=0,r2=-1;方程的通解為y=C1e-x+C1,可知選C。

46.A

47.B

48.B?

49.C解析:

50.D51.1;本題考查的知識(shí)點(diǎn)為二元函數(shù)的極值.

可知點(diǎn)(0,0)為z的極小值點(diǎn),極小值為1.

52.12x

53.y=Ce-4x

54.ex2

55.

56.y=Ce2x-3/2

57.

58.59.本題考查的知識(shí)點(diǎn)為無(wú)窮小的性質(zhì)。

60.

61.

62.x(asinx+bcosx)

63.

64.

65.

66.

;本題考查的知識(shí)點(diǎn)為不定積分的換元積分法.

67.

68.

本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).

69.1/z本題考查了二元函數(shù)的二階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。

70.y=-x+171.由等價(jià)無(wú)窮小量的定義可知

72.

73.

74.

75.76.由二重積分物理意義知

77.函數(shù)的定義域?yàn)?/p>

注意

78.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

79.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

80.

列表:

說(shuō)明

81.

82.83.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

84.

85.由一階線性微分方程通解公式有

86.

87.

88.

89.

9

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論